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ABSTRACT

This paper considers the distributed control of a swarm of unmanned aerial

vehicles investigating autonomous pattern formation and reconfigurability. A

behaviour-based approach to formation control is considered with a velocity

field control algorithm developed through bifurcating potential fields. This new

approach extends previous research into pattern formation using potential field

theory by considering the use of bifurcation theory as a means of reconfiguring

a swarm pattern through a free parameter change. The advantage of this kind

of system is that it is extremely robust to individual failures, is scalable and also

flexible. The potential field consists of a steering and repulsive term with the

bifurcation of the steering potential resulting in a change of the swarm pattern.

The repulsive potential ensures collision avoidance and an equally spaced final

formation. The stability of the system is demonstrated to ensure that desired

behaviours always occur, assuming that at large separation distances the repul-

sive potential can be neglected through a scale separation that exists between

the steering and repulsive potential. The control laws developed are applied

to a formation of 10 unmanned aerial vehicles using a velocity field tracking

approach, where it is shown numerically that desired patterns can be formed

safely ensuring collision avoidance.
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NOMENCLATURE

N number of UAVs in formation

U artificial potential field

US steering potential

UR repulsive potential

µ bifurcation parameter

Cr, Lr repulsive potential amplitude and length scale

x UAV position vector

v UAV velocity vector

α amplitude of dissipative term

J Jacobian

L Lyapunov function

V UAV speed (m/s)

V̇ UAV acceleration (m/s2)

ψ UAV heading angle (radians)

ψ̇ UAV turn rate (radians/s)

λv, λψ speed and heading angle inverse time constants

Zr repulsive potential sensing radius

g gravitational constant, 9.81ms−2

uc desired cruise speed of UAV, 2.7ms−1

t time (s)

1 INTRODUCTION

Interest in unmanned aerial vehicles (UAVs) has grown in recent years, with a

variety of civil and military applications such as scientific data gathering, mili-

tary reconnaissance and convoy protection [1, 2, 3, 4, 5, 6]. In addition to the

development of single UAV systems, it has been shown that having multiple
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UAVs flying in formation will allow for applications, such as interferometric

imaging, that could not be achieved through single UAVs [7]. As the number of

UAVs increase, controlling the system in a centralised way becomes unrealistic,

so that decentralised control methods have been developed to overcome this

problem.

In the area of distributed multi-vehicle systems some work is motivated by the

emergent and self-organised behaviour that is seen in nature. Through simple

local interactions a school of fish or flock of birds, for example, will aggregate to-

gether to form global emergent behaviour [7]. Brooks [8] introduced the concept

of a behavioural control architecture taking inspiration from natural behaviours.

By having this form of control we can have a system that, although controlled

through relatively simple laws, will achieve a desired behaviour and have the

advantages of being a scalable, robust and flexible system [9].

Artificial potential fields are an example of behavioural control architecture

[7, 10, 11] and were first introduced by Khatib [12] in the area of obstacle avoid-

ance for manipulators. More recently they have been applied successfully in

the area of autonomous robot motion planning [13, 14] and in space applica-

tions [15, 16, 17]. The basic idea behind artificial potential fields is to create a

workspace where each UAV is attracted towards a goal state with a repulsive

potential ensuring collide avoidance [14]. As the UAV swarm may be required

to achieve different tasks, a desirable property of the system would be reconfig-

urability. In order to minimise computational expense bifurcation theory can

be used to reconfigure the formation through a simple free parameter change.

Other approaches to the control of UAVs include Reynolds flocking theory [?]

that takes a set of rules and applies them to all the vehicles in the group.

Reynolds was able to successfully show the first computer simulation of flocking
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agents and several authors have since extended his theory and applied it specif-

ically to control a swarm of UAVs [18, 19]. Another approach to UAV control

is graph theory that represents the local interactions and spatial distribution of

a swarm of UAVs in a directed graph [20]. The virtual structure approach is

also used that treats each UAV as a particle that attempts to maintain a fixed

geometric relationship [7, 21].

The purpose of this paper is to investigate the distributed control of pattern

formation and reconfigurability in a swarm of UAVs. A behavioural control

architecture is developed through the artificial potential field method and bifur-

cation theory that allows for the creation of autonomous swarm patterns that

can be altered through manipulation of the free parameters of the potential field.

This new approach consists of a steering and repulsive potential field with the

bifurcation of the steering potential resulting in the formation of different pat-

terns. The repulsive potential ensures collision avoidance and an equally spaced

final formation. The advantages of this system are that it is robust, scalable

and flexible. In addition, for real safety critical applications it is essential that

the stability of the system is ensured. As opposed to algorithm validation this

paper mathematically proves the stability of the system. It is shown that there

exists a scale separation between the steering and repulsive potential so that

UAV system moves under the influence of a far field steering potential but with

short range collisions. It can then be proven analytically that the desired be-

haviours always occur. The model is then applied to a velocity field tracking

approach that generates a set of commands to control the UAV heading and

speed.

The paper proceeds as follows. In section 2 we describe the model used and

explain the artificial potential field method and bifurcation theory. We also

discuss the linear and non-linear stability of the models developed. Section 3
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shows the numerical results of simulations demonstrating pattern formations

and reconfigurability. In section 4 we consider a swarm of 10 UAVs desired to

form a double ring pattern and then bifurcate into two different ring patterns,

traveling at constant speed and ensuring collision avoidance throughout the

simulation.

2 FORMATION MODEL

2.1 Model

We consider a swarm of homogeneous UAVs (1 ≤ i ≤ N) described through a

second-order dynamical system as shown in Eq. 1 and 2. The negative gradient

of an artificial potential function, U , describes a virtual force acting on each

UAV with mass, m, position, xi, and velocity, vi;

dxi
dt

= vi (1)

dvi
dt

= −∇iU
S(xi) −∇iU

R(xij) − σvi (2)

It can be seen from Eq. 2 that the virtual force experienced by each UAV is

dependent upon two artificial potential functions and a dissipative term, where

σ controls the amplitude of this dissipation. The first term in Eq. 2 is defined

as the steering potential, US, and is used to command each UAV to a desired

position with the repulsive potential, UR, ensuring collision avoidance and an

equally spaced formation.

The repulsive potential is a simple pairwise exponential function that is based

on a generalized Morse potential [22] as shown in Eq. 3;

URij =
∑

j,j 6=i

Cr exp−|xij |/Lr (3)
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where Cr and Lr represent the amplitude and length-scale of repulsive potential

respectively and |xij | = |xi − xj|.

The total repulsive force on the ith UAV is dependent upon the position of all

the other (N − 1) UAVs in the formation. The repulsive potential is therefore

used to ensure that as the UAVs are steered towards the goal state they do not

collide with each other. Once all the UAVs have been driven to the desired equi-

librium state the repulsive potential also ensures that they are equally spaced

for symmetric formations.

2.2 Artificial Potential Function Scale Separation

As noted in the previous section the dynamics of each UAV is dependent upon

the gradient of two different artificial potential functions. The steering and

repulsive potential are a function of position only with length scale R and Lr

respectively as shown in Eq. 4 and 5;

US = f(X,R) (4)

UR = Cr exp−X/Lr (5)

For illustration we consider a simple 1-dimensional system with position coor-

dinate X .

Defining an outer region dependent upon the steering potential only and an in-

ner region dependent upon the repulsive potential only we can show that these

two regions are separated so that each UAV moves under the influence of the

long-range steering potential but with short range collisions (for Lr/R << 1)

effectively creating a boundary layer between them. This can then be used
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to determine the non-linear stability properties of the system considering the

steering potential only.

For 1D motion of a UAV of mass m and damping constant σ we have;

m
dV

dt
= −dU

R

∂X
− dUS

dX
− σV (6)

so that,

mV
dV

dX
=

Cr
Lr

exp−X/Lr −dU
S

dX
− σV (7)

Scaling X such that S = X/R then;

1

R
mV

dV

dS
=

Cr
Lr

exp
−
R

Lr
S
− 1

R

dUS

dS
− σV (8)

Now define ε =
Lr
R

<< 1 so that;

mV
dV

dS
=

Cr
ε

exp
−
S

ε −dU
S

dS
− σRV (9)

Let ε → 0 in order to consider ‘far field’ dynamics which forms a singularly

perturbed system;

lim
ε→0

1

ε
exp(−S/ε) = 0 (10)

Therefore at large separation distances the repulsive potential vanishes and we

can consider the steering potential only when considering the stability of anal-

ysis of the system.

Conversely if we define S =
S

ε
we find that the ‘near field’ dynamics are defined

by;
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mV
dV

dS
= Cr exp−S −εR

(

1

Lr

dUS

dS
+ σV

)

(11)

and letting ε→ 0;

mV
dV

dS
= Cr exp−S (12)

Thus, at small separations the steering potential vanishes. If we then consider

the 2nd order system and assume that m/σ << 1 so that the dynamics are

overdamped, we obtain a velocity field defined as shown in Eq. 15.

m

σ
V
dV

dS
= − 1

σ
∇iU

S(X) − 1

σ
∇iU

R(X) − V (13)

assuming that m/σ << 1 so that the system is overdamped we find that,

− 1

σ
∇iU

S(X) − 1

σ
∇iU

R(X) − V = 0 (14)

thus,

dX

dt
= − 1

σ
∇iU

S(X) − 1

σ
∇iU

R(X) (15)

Each UAV therefore acts under the influence of a long range steering potential

but with short range collisions, allowing us to treat the collisions separate in

the subsequent stability analysis. We can also now use the first-order velocity

field to control the formation of UAVs as shown in Eq. 16;

dxi
dt

= −∇iU
S(xi) −∇iU

R(xij) (16)

By assuming that the second-order system is overdamped the UAVs will closely

track this velocity field.
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2.3 Steering Potential - 1 parameter static bifurcation

Referring to Eq. 16 we can base the steering potential on a supercritical pitchfork

bifurcation [23] as shown in the first two terms of Eq. 17. This potential drives

each UAV to a goal distance, r, from the origin in the x− y plane with the last

term in Eq. 17 ensuring that the formation is created in the x− y plane, where

α controls the amplitude of this quadratic potential;

US(xi;µ, α) = −1

2
µ (ρi − r)2 +

1

4
(ρi − r)4 + αz2

i (17)

where cylindrical polar coordinates, xi = (ρi, zi)
T , are used, neglecting the θ

term as the potential field is rotationally symmetric.

Depending upon the sign of µ, the steering potential can have two distinct forms.

Figure 1 shows the shape of the potential and the corresponding velocity field

when µ < 0 and µ > 0. Figure 2 shows the bifurcation diagram for the steering

potential indicating a bifurcation from a single local minimum into two local

minima when µ = 0.
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Figure 1: Potential and velocity fields (i) potential µ < 0 (ii) potential µ > 0

(iii) velocity field µ < 0 (iv) velocity field µ > 0
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Figure 2: Supercritical pitchfork bifurcation diagram
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The equilibrium states of the potential occur whenever ∂U/∂ρi = 0 and ∂U/∂zi =

0 . Therefore;

∂U

∂ρi
= −µ(ρi − r) + (ρi − r)3 (18)

∂U

∂zi
= αzi (19)

If µ ≤ 0 equilibrium occurs when ρi = r. If µ > 0 equilibrium occurs when

ρi = r, r ±√
µ. Therefore, a single ring will bifurcate to a double ring using µ

as a control parameter.

For a function consisting of two variables the stability of the system is deter-

mined from the sign of the determinant of the Hessian matrix [?], D, given in

Eq. 20;

D =
∂2U

∂ρ2
i

∂2U

∂z2
i

−
[

∂2U

∂ρi∂zi

]2

(20)

The conditions for stability are as follows;

(i) D > 0, ∂2U/∂ρ2
i > 0 =⇒ equilibrium point is a stable minimum.

(ii) D > 0, ∂2U/∂ρ2
i < 0 =⇒ equilibrium point is a unstable maximum.

(iii) D < 0 =⇒ equilibrium point is a saddle.

The second derivative of the potential is shown in Eq. 21, 22 and 23;

∂2U

∂ρ2
i

= −µ+ 3(ρi − r)2 (21)

∂2U

∂z2
i

= α (22)

∂2U

∂ρi∂zi
= 0 (23)
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From Eq. 22 as α is positive, ∂2U/∂z2
i > 0. From Eq. 21 it can be seen that

∂2U/∂ρ2
i ≷ 0 depending on the values of µ. Therefore, the properties of the

equilibrium state ρeq are shown in Table 1;

Table 1: Stability of equilibrium states

Bifurcation Equilibrium ∂2U/∂ρ2
i Stability

parameter, µ position, ρeq

< 0 r > 0 stable minimum

> 0 r < 0 unstable maximum

r +
√
µ > 0 stable minimum

r −√
µ > 0 stable minimum

2.3.1 Linear stability: 1-parameter static bifurcation

In order to determine the linear stability of a system of UAVs subject to such a 1-

parameter static bifurcation steering potential we perform an eigenvalue analysis

on the linearized equations of motion assuming that at large separation distances

the repulsive potential can be neglected through scale separation as explained

in Section 2.2. The linear stability analysis will be used to determine the local

behaviour of the system by calculating its eigenvalue spectrum. Therefore, the

equations of motion for the model are re-cast as;





ρ̇i

żi



 =









−∂dU
S

∂ρi

−∂dU
S

∂zi









=





f(ρi, zi)

g(ρi, zi)



 (24)

Let ρo and zo denote fixed points with ρ̇i = żi = 0 so that;
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f(ρo, zo) = 0 (25)

g(ρo, zo) = 0 (26)

Thus, ∇US = 0 at equilibrium. This occurs when ρo = r if µ < 0, ρo = r, r±√
µ

if µ > 0 and zo = 0. Defining δρi = ρi − ρo and δzi = zi − zo and Taylor Series

expanding about the fixed points to linear order the eigenvalues of system can

be found using;





δρ̇i

δżi



 = J





δρi

δzi



 (27)

where,

J =





∂
∂ρi

(f(ρi, zi))
∂
∂zi

(f(ρi, zi))

∂
∂ρi

(g(ρi, zi))
∂
∂zi

(g(ρi, zi))





∣

∣

∣

∣

∣

∣

ρo,zo

(28)

The Jacobian, J, is then a 2x2 matrix given by;

J =





−∂2U
∂ρ2

i

0

0 −∂2U
∂z2

i





∣

∣

∣

∣

∣

∣

ρo,zo

(29)

Substituting a trial exponential solution into Eq. 27 we find that;





δρ̇i

δżi



 =





δρo

δzo



 eλt (30)

Therefore, the eigenvalues, λ, of the system are found from det(J − λI) = 0.

As shown previously, if µ < 0 equilibrium of the system occurs when xo = (r, 0).

Evaluating the Jacobian matrix given in Eq. 29 we find that;

J =





µ 0

0 −α



 (31)
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The corresponding eigenvalue spectrum is therefore;

λ1,2 = −α, µ (32)

As α > 0 and µ < 0 the eigenvalues are always negative real and the equilibrium

position can therefore be considered as linearly stable.

If µ > 0 equilibrium of the system occurs when xo1 = (r, 0), xo2 = (r +
√
µ, 0)

and xo3 = (r − √
µ, 0). The Jacobian matrix evaluated at the three different

equilibrium positions is given by Eq. 33, 34 and 35 respectively as;

J1 =





µ 0

0 −α



 (33)

J2 =





−2µ 0

0 −α



 (34)

J3 =





−2µ 0

0 −α



 (35)

The eigenvalues for J1 are;

λ1,2 = −α, µ (36)

Considering the pair of eigenvalues in Eq. 36, as α > 0 and µ > 0 we have one

positive eigenvalue so that the equilibrium position is therefore always linearly

unstable.

The eigenvalues for J2 and J3 are;

λ1,2 = −α,−2µ (37)

Similarly again as α > 0 and µ > 0 the eigenvalues are always negative real

so that these two equilibrium positions can therefore be considered as linearly
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stable.

Figure 3 confirms the linearised stability results showing the phase plane plot

for µ < 0 and µ > 0.
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Figure 3: Phase diagram (i) µ < 0, r = 5 (ii) µ > 0, r = 5

From Fig. 3(i) it can be seen that when µ < 0 we have one stable equilibrium

position when xo = (r, 0) as indicated by the eigenvalues given in Eq. 31. If

the system then bifurcates so that µ > 0, the stable position at xo1 = (r, 0)

becomes unstable and positions xo2 = (r +
√
µ, 0) and xo3 = (r − √

µ, 0) are

stable agreeing well with eigenvalues given for J2 and J3.

2.3.2 Non-linear stability: 1-parameter static bifurcation

To determine the non-linear stability of the dynamical system we consider the

use of Lyapunov methods [24]. We can use this theorem to guarantee the global

stability of the system with convergence to the desired final state. The aim of

the steering potential is to drive each UAV to the desired equilibrium position

that corresponds to the minimum potential. Therefore, if Lyapunov’s method

can be used for the system, as time evolves the system will relax into the mini-
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mum energy state.

The Lyapunov function, L, for the system is defined in Eq. 38, where US(xi)

is given in Eq. 17;

L(xi) =
∑

i

US(xi) (38)

In order to ensure the global stability of the system the potential is defined such

that the conditions given in Table 2 hold true.

Table 2: Lyapunov’s Second Theorem stability conditions

xi 6= xo xi = xo

L(xi) > 0 L(xo) = 0

L̇(xi) < 0 L̇(xo) = 0

The rate of change of the Lyapunov function can be expressed as;

dL

dt
=

∑

i

[(

∂L

∂xi

)

ẋi

]

(39)

Then, substituting Eq. 24 into Eq. 52 it can be seen that;

dL

dt
= −

∑

i

∇Us(xi)2 ≤ 0 (40)

From Table 2 if L is a positive definite function and L̇ is a negative definite the

system will be uniformly stable. A problem arises in the use of superimposed

artificial potential functions as L̇ ≤ 0. This implies that L̇ could vanish in a

position other than the goal minimum suggesting that the system may become

trapped in a local minimum. In order to ensure that our system is asymptot-

ically stable at the desired goal state the LaSalle principle [25] can be used.

This extends the above constraints to state that if L(0) = L̇(0) = 0 and the set
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{xi|L̇ = 0} only occurs when xi = xo, then the goal state is asymptotically sta-

ble. Therefore, for the quadratic potential considered in this paper the LaSalle

principle is valid. As we have a smooth well defined symmetric potential field,

equilibrium only occurs at the goal states so the local minima problem can be

avoided and the system will relax into the desired goal position.

2.4 Hopf bifurcation - 1 parameter dynamic bifurcation

In certain engineering applications, a formation of UAVs may be desired to form

a circling surveillance pattern [2]. Frew et al. have shown how this could be

achieved through the use of a Lyapunov guidance vector field approach that

produces a stable convergence to a circling limit cycle behaviour for a system of

UAVs [3] [26]. In bifurcation theory the Hopf bifurcation is a local bifurcation

about a fixed point of a dynamical system that generates a limit cycle as the

bifurcation parameter µ changes sign.

An example of such a Hopf bifurcation is given in Eq. 41 and 42 with Fig. 4

showing an example of the velocity field created when µ > 0. When the bifur-

cation parameter µ > 0 a pair of complex eigenvalues cross the imaginary axis

and the limit cycle behaviour is induced. As µ increases the size of limit cycle

also increases so that we can have a varying size of limit cycle and therefore

surveillance region.

We define the Hopf bifurcation as;

ẋi = µxi + yi − xi(x
2
i + y2

i ) (41)

ẏi = −xi + µyi − yi(x
2
i + y2

i ) (42)

The first order control model is shown in Eq. 43 with the repulsive potential

added to again ensure collision avoidance and an equally spaced formation;
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Figure 4: Hopf Bifurcation: µ > 0











ẋi

ẏi

żi











=

















µxi + yi − xi(x
2
i + y2

i ) −
∂UR

∂xi

−xi + µyi − yi(x
2
i + y2

i ) −
∂UR

∂yi

−αzi −
∂UR

∂zi

















(43)

2.4.1 Linear stability: 1-parameter dynamic bifurcation

Similar to the analysis performed in section 2.3.1 the velocity field described by

Eq. 43 is recast to determine the linear stability of the system assuming at large

separation distances the repulsive potential function can be ignored. Therefore,











ẋi

ẏi

żi











=











µxi + yi − xi(x
2
i + y2

i )

−xi + µyi − yi(x
2
i + y2

i )

−αzi











=











m(xi)

n(xi)

p(xi)











(44)

Similarly, letting xo denote fixed points with ẋi = ẏi = żi = 0 so that;

m(xo, yo, zo) = 0 (45)
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n(xo, yo, zo) = 0 (46)

p(xo, yo, zo) = 0 (47)

The Jacobian, J, is then a 3x3 matrix given by;

J =











∂
∂xi

(m(xi))
∂
∂yi

(m(xi))
∂
∂zi

(m(xi))

∂
∂xi

(n(xi))
∂
∂yi

(n(xi))
∂
∂zi

(n(xi))

∂
∂xi

(p(xi))
∂
∂yi

(p(xi))
∂
∂zi

(p(xi))











∣

∣

∣

∣

∣

∣

∣

∣

∣

xo,yo,zo

(48)

Thus, it can be shown that;

J =











µ 1 0

−1 µ 0

0 0 −α











(49)

The corresponding eigenvalue spectrum is therefore;

λ1,2,3 = −α, µ± i (50)

From the eigenvalue spectrum given in Eq. 50 it can be seen that since µ < 0

and α > 0 the equilibrium position is linearly stable indicating a stable spiral

to that position. Alternatively, if we bifurcate the system and make µ > 0, the

eigenvalues are now either positive real or positive real with complex conjugate.

Therefore, as the complex eigenvalues cross the imaginary axis at µ = 0 we have

a bifurcation of the system from a stable spiral into the oscillatory limit cycle

motion.

2.4.2 Non-linear stability: 1-parameter dynamic bifurcation

We can again use Lyapunov’s Second Theorem to determine the non-linear

stability of the system. Defining the Lyapunov function, L, as;
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L =
1

2

∑

i

x2
i (51)

Therefore,

dL

dt
=

∑

i

[

∂L

∂xi
ẋi +

∂L

∂yi
ẏi +

∂L

∂zi
żi

]

(52)

dL

dt
=

∑

i

[

ρ2
i (µ− ρ2

i ) − αz2
i

]

(53)

For µ < 0 and α > 0, L̇ ≤ 0 so that ρi is always decreasing until L = 0 so

each UAV would be attracted to the equilibrium position located at the origin

(xi = 0, yi = 0, zi = 0). Alternatively, if µ > 0 and α > 0, L̇ > 0 if ρ2
i < µ and

L̇ < 0 if ρ2
i > µ so the system is attracted to a limit cycle of radius, ρi = µ, in

the x− y plane with zi = 0.

3 NUMERICAL RESULTS

3.1 Static Bifurcation Formation Patterns

Before considering the UAV application in detail it is useful to demonstrate

numerically the reconfigurable patterns and advantages of the control model

developed by considering a system of agents. Depending upon the choice of the

free parameters in Eq. 17 (µ, r, α, Cr and Lr) we can achieve three different

formations; cluster, ring and double ring. Figure 5 shows the results for a swarm

of 30 agents given random initial conditions with free parameters summarised

in Table 3.
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Figure 5: Formation patterns: (i) cluster formation (ii) ring formation (iii)

double ring formation
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Table 3: 1 parameter static bifurcation free parameters

Free Parameter Cluster Ring Double Ring

µ -4 -4 1.5

r 0 3 3

α 50 50 50

zgoal 0 0 0

Cr 1 1 1

Lr 0.5 0.2 0.5

From the results it can be seen that the first formation corresponds to the case

when µ < 0 and r = 0. The agents in the system are driven towards the origin

with the repulsive potential ultimately causing a uniform cluster to form. The

second formation consists of a ring with radius equal to the magnitude that

the pitchfork bifurcation equation is moved on the along the axis (r = 3). In

the final formation µ > 0 and the stable equilibrium in the second formation

becomes unstable and the system bifurcates into the double rig formation.

3.2 Static Bifurcation Results

Figures 6 shows the transition of a formation of 30 agents in the x − y plane

through the use of the static pitchfork bifurcation equation.
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Figure 6: Transition between different formations

As it can be seen, the system bifurcates from a ring to two rings to a cluster

then back to a ring. This is achieved through a simple parameter change and is

one of the advantages of using the pitchfork bifurcation equation as a basis for

the artificial potential function. Rather than controlling each UAV individually

the global pattern of the formation can be manipulated via µ.

3.3 Hopf Bifurcation Results

Figure 7 shows the results for a system of 15 agents interacting through the

hopf bifurcation field as discussed in section 2.3. The agents in the system are

given random initial conditions and required to fall onto a limit cycle behaviour

with radius equal to 5 in the x− y plane (µ = 25).
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Figure 7: Hopf bifurcation results (Cr = 1, Lr = 2, α = 10, zgoal = 0 and

µ = 25) (i) time evolution (ii) final formation

As can be seen from Fig. 7 the 15 agents fall onto the desired limit cycle rotation

and relaxes into constant separation formation.

3.4 Robustness of the Model

As one of the desirable characteristics of the model developed is that the system

of agents are robust to failures it is useful to demonstrate this as shown in Fig. 8.
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Figure 8: Robustness of the Model (i) random initial conditions for 30 agents

(ii) ring formation (µ = −2, r = 10, Cr = 3 and Lr = 5 (iii) failure of 10 agents

(iv) autonomous reconfiguration of the formation

As can be seen from the results a system of 30 agents fall into a ring formation

with radius 10. Figure 8 (iii) shows the random failure of 10 agents with the

assumption that once they fail they are completely removed from the system.

The system will then autonomously reconfigure to a new ring configuration as

shown in Fig. 8(iv).

3.5 Scalable Formation

Another advantage of the model developed is that the systems scales very well

as the number of agents increase as shown in Fig. 9.
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Figure 9: Scalable formation (i) random initial conditions for 30 agents (ii)

cluster formation (µ = −2, r = 0, Cr = 1 and Lr = 0.5 (iii) addition of 20

agents (iv) autonomous reconfiguration of the cluster formation

Therefore, as shown in the results the system can autonomously reconfigure

with the addition of new agents.
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3.6 Flexible Formations

The final advantage of the model is that system is flexible to obstacles and can

also alter its pattern through a simple parameter change. By adding in several

circular obstacles it can be shown that we can have a system of 30 agents that

will create a cluster formation, autonomously manoeuver to avoid the obstacles,

reconfigure into the cluster pattern and then finally bifurcate into a ring forma-

tion.

A problem with the superimposed artificial potential field method is that the

system may get trapped in a local minimum as noted in section 2.3.2. To

overcome this problem we consider the use of a Gaussian potential function

that creates a spherical potential obstacle with no local minima as defined in

Eq. 54 [27];

Uobs = Co exp−|xi−xobs|/Lo (54)

where, xobs represents the obstacle position vector and Co, Lo are the amplitude

and length scale of the obstacle potential respectively.

The coordinate system is altered so that it is translating at constant speed and

from the results shown in Fig. 10 it can be seen that formation of agents success-

fully falls into the cluster formation, manoeuvres around the obstacles reforming

the cluster formation and then bifurcates into the desired ring formation. The

model can therefore be considered as flexible as the formations have the ability

to avoid obstacles whilst also being able to alter pattern.
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4 UAV APPLICATION

In order to test the model developed we consider a swarm of 10 commercially

available Dragonfly UAV helicopters [28] that are required to fall onto a double

ring formation and then bifurcate into two different ring formations in the x−y

plane, traveling at a final constant speed of 2.7ms−1 whilst ensuring collision

avoidance and an equally spaced final formation.

The Dragonfly X6 UAV helicopters have a cruise speed of 2.7ms−1 and maxi-

mum turning rate defined as ψ̇max = 90os−1. It is assumed that the maximum

speed and acceleration are Vmax = 3ms−1 and v̇max = 0.1g respectively. It is

also assumed that the position of the UAVs can be determined precisely and

the dynamic control laws developed can accurately control the UAV state.

Although the artificial potential function method is theoretically elegant, Sigurd

[29] points out that the assumption that all UAVs have information on the

position of all other UAVs in the system is unrealistic as the number of UAVs

increase. Each UAV will now have a sensing region that will ensure collision

avoidance and an equally spaced final formation as shown in Eq. 55 and Fig.

11, where Zr is the radius of repulsive zone of influence;

URij =















∑

j,j 6=i

Cr exp−|xij |/Lr if |xij | ≤ Zr

0 if |xij | > Zr















(55)

The control model used is based on a simple first order velocity field tracking

approach that has been used by several authors as a basic way of transform-

ing a desired velocity field into a set of commands that control the speed and

turn rate of each UAV [1, 26, 30]. The desired velocity field explained in sec-

tion 2 will now be used to control each UAV by providing an actual heading
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(ψi) and speed (Vi) command, assuming the formation is flying at fixed altitude.

Therefore, considering the pitchfork bifurcation described by Eq. 16 the desired

velocity vectors are described by Eq. 56 and 57;

ẋdesired = µ
xn
ρn

(ρn − r) − xn
ρn

(ρn − r)3 +
∑

j,j 6=i

Cr
Lr

xij
|xij |

exp−|xij |/Lr +uc (56)

ẏdesired = µ
yi
ρn

(ρn − r) − yi
ρn

(ρn − r)3 +
∑

j,j 6=i

Cr
Lr

yij
|xij |

exp−|xij |/Lr (57)

where, as the UAVs are desired to move at a constant forward speed equal to uc

we replace xi with xn = xi − uct and ρi with ρn = (x2
n + y2

i )
0.5 in the steering

potential terms.

The desired command speed (Vdesired) and heading angle (ψdesired) are there-

fore;

Vdesired = (ẋ2
desired + ẏ2

desired)
0.5 (58)

ψdesired = arctan

(

ẏdesired
ẋdesired

)

(59)

The state variables for the system are then defined as;

30



















x1

x2

x3

x4

















=

















Vi

ψi

xi

yi

















(60)

A system of first order equations of motion are then solved resulting in a com-

manded speed and heading angle that can be used to control the UAV as shown

in Eq. 61, where the constants λv and λψ are inverse time constants determining

the response of each UAV;

















ẋ1

ẋ2

ẋ3

ẋ4

















=

















−λv(Vi − Vdesired) if |v̇i| ≤ v̇max

−λψ(ψi − ψdesired) if |ψ̇i| ≤ ψ̇max

Vi cos(ψi)

Vi sin(ψi)

















(61)

In addition as there is a bound on the maximum turning rate and speed there

is turning circle associated with each UAV. The radius of the turning circle is

defined in Eq. 62 so that if the maximum speed and turning rate are 3ms−1

and 90os−1 respectively, then the maximum turning radius, Rturning, is approx-

imately 1.9m.

Rturning =
Vmax

ψ̇max
(62)

In order to estimate that size of the repulsive free parameters, Cr and Lr, we

can consider the case of 2 UAVs interacting through the repulsive potential

only. Considering a simple 1-dimensional system with position coordinate, X ,

we know that for X >> 0,
dX

dt
≈ Vmax. Therefore, assuming that at close

separation distances the repulsive potential only acts on the UAVs we have;

dX

dt
= Vmax −

Cr
Lr

exp
−
X

Lr (63)
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The minimum separation distance, Xmin, will therefore be estimated by setting
dX

dt
= 0 so that,

Xmin = Lr ln

(

Cr
VmaxLr

)

(64)

In order to ensure collision avoidance, the minimum separation distance between

the UAVs in the formation must be 2 × Rturning = 3.8m. The repulsive po-

tential constants, Cr and Lr, are therefore chosen to ensure that the minimum

separation, Xmin, is greater than this value. Each UAV is given random initial

conditions in the x − y plane with initial speed of 2.7ms−1 and random initial

heading angles. The free parameter values are summarised in Table 4.

Table 4: 1 parameter static bifurcation free parameters

formation time (s) µ r Cr Lr λv λψ ZR

double ring 0-200 100 30 73 20 1 1 45

ring 200-400 -1 40 73 10 1 1 45

ring 400-600 -1 50 73 10 1 1 45

From the results shown in Fig. 12, 13 and 14 it can be seen that the formation

successfully creates the desired equally spaced double ring formation and bifur-

cates into the two ring formations. Figure 12 shows the final formation, whereas

Fig. 13 shows the time evolution for each formation. It can also be seen from

Fig. 14 that the formation relaxes into a constant separation distance for each

formation and that collision avoidance is ensured throughout the simulation.
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Figure 12: UAV formations in final state (i) double ring (ii) ring (radius = 40m

(iii) ring (radius = 50m)
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Figure 13: UAV results (i) random initial conditions (ii) formation after 200s

(iii) formation after 400s (iv) final desired ring formation after 600s traveling

at constant speed
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Therefore, through the use of a velocity field tracking approach we are able to

generate a real set of commands that can control a swarm of UAVs, allowing a

reconfigurable equally spaced formation with collision avoidance assured.

5 CONCLUSION

It has been shown how a behavioural based control method can be used to

create various patterns for a formation of UAVs and has the advantages of being

robust, scalable and flexible. Dynamical systems theory is used as the basis of

the control method with the new approach of bifurcating potential fields used

for pattern formation and reconfigurability. A first order velocity field is used to

command each UAV based on a steering and repulsive potential field. It is shown

that there exists a scale separation between the steering and repulsive potential

so that each UAV moves under the influence of a long range steering potential

but with short range collision avoidance. Using this the stability of the system

was demonstrated analytically to ensure that desired behaviours always occur.

To demonstrate the algorithm developed we consider the control of 10 UAVs

that are required to form an equally spaced double ring formation and then
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bifurcate into two different ring formations traveling at constant speed whilst

also ensuring collision avoidance. A simple 1st order velocity field tracking

approach is used to track the desired velocity field and generate a set a real

commands that control the aerodynamic surfaces of the UAV. We consider the

use of 10 commercially available UAV helicopters that have maximum turning

rate of 90os−1. The numerical results successfully show the formation of an

equally spaced double ring of UAVs that then bifurcates into two different ring

formations, traveling at constant speed with collision avoidance ensured.
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