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Abstract

For many networks in nature, science and technology, it is possible
to order the nodes so that most links are short-range, connecting near-
neighbours, and relatively few long-range links, or shortcuts, are present.
Given a network as a set of observed links (interactions), the task of finding
an ordering of the nodes that reveals such a range dependent structure is
closely related to some sparse matrix reordering problems arising in sci-
entific computation. The spectral, or Fiedler vector, approach for sparse
matrix reordering has successfully been applied to biological data sets, re-
vealing useful structures and subpatterns. In this work we argue that a
periodic analogue of the standard reordering task is also highly relevant.
Here, rather than encouraging nonzeros only to lie close to the diagonal
of a suitably ordered adjacency matrix, we also allow them to inhabit the
off-diagonal corners. Indeed, for the classic small-world model of Watts
and Strogatz (Nature, 1998) this type of periodic structure is inherent.
We therefore devise and test a new spectral algorithm for periodic reorder-
ing. By generalizing the range-dependent random graph class of Grindrod
(Phys. Rev. E, 2002) to the periodic case, we can also construct a com-
putable likelihood ratio that suggests whether a given network is inherently
linear or periodic. Tests on synthetic data show that the new algorithm
can detect periodic structure, even in the presence of noise. Further ex-
periments on real biological data sets then show that some networks are
better regarded as periodic than linear. Hence, we find both qualitative
(reordered networks plots) and quantitative (likelihood ratios) evidence of
periodicity in biological networks.
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1 Background

Large, sparse networks arise naturally when we describe the interconnectedness of
components in complex systems [1, 19, 28]. The need to extract useful information
creates challenging computational problems that, at least in part, overlap with
sparse linear algebra tasks dealt with by numerical analysts. In this work we
look at a matrix reordering problem that arises naturally from recent work in
network modelling and computational biology. The reordering comes with a
twist—a periodic analogue of the more usual “envelope reduction” or “two-sum
minimization” is required.

The presentation is organized as follows. In the next section we outline some
recent random graph models that motivate the inverse problem. In section 3 we
give a brief overview of the use of spectral methods for graph reordering, based
on the graph Laplacian. We then derive a spectral algorithm for the periodic
reordering problem and illustrate its use on specially constructed test data. In
section 4 we show that, under the hypothesis that the data comes from a random
network class with range-dependent edge probabilities, it is possible to compare
the likelihoods of linear and periodic structure. In section 5 we apply the algo-
rithm to biological network data and, in some cases, find evidence of periodic
structure.

2 Network Models

Classical random graph theory studies models where either (a) an edge is placed
between a pair of nodes with some fixed, independent, probability, or (b) a graph
with a specified number of nodes and edges is chosen uniformly at random from
the collection of all such graphs [8, 9]. Strogatz [28] makes the point that networks
in nature and technology do not look like classical random graphs, nor do they
look like regular lattices. Watts and Strogatz [32] proposed a new model that
aimed to capture this “between order and disorder” appearance. Their model
begins with a periodic k-nearest neighbour ring, and proceeds by rewiring. Given
some fixed probability, ρ say, we consider each edge in turn and with probability
ρ we exchange (rewire) one of its end nodes with a node chosen uniformly across
the network. The average degree thus remains constant.

In [20], instead of rewiring, the authors added shortcuts to create a very
similar effect. For each node in turn, with some probability ρ we insert a new
edge that connects it to another node chosen uniformly across the network. This
construction has the benefit of guaranteeing to maintain connectivity, though it
increases the average degree.

Watts and Strogatz coined the term small world network to describe the
seemingly unlikely combination of small typical pathlength (randomly chosen
nodes can be connected by small chains of edges) and high clustering coefficient
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(neighbours of neighbours tend to be neighbours). They showed via simulations
that the rewired periodic ring has the small world property for suitable values
of ρ, and also showed that many real life networks are small worlds. Hence, the
small world model goes some way to capturing an essential feature of complex
networks.

Grindrod [10] proposed a variation of the Watts-Strogatz and Watts-Newman-
Moore models called range dependent random graphs (RDRGs) [13]. Here, short-
cuts arise with a probability that depends on the lattice distance between nodes;
that is, the range. Grindrod argued that this type of connectivity can be used
to describe interactions between proteins. The model uses a linear, rather than
periodic, node ordering: this assumption was largely pragmatic, anticipating that
the number of nodes would be very large in applications.

Definition 2.1 For a given decay function, f , that maps from {1, 2, . . . , N−1} to

[0, 1], the RDRG, model generates an edge between nodes i and j with independent

probability f(|j − i|).

The case of geometric decay, where f(k) = αλk−1 for constants α, λ ∈ [0, 1],
allows for explicit analysis (employing a generating function method) to calculate
the clustering coefficient and other macro properties of the network [10]. Here
we will focus on the case where α = λ and consider geometric decay f(k) = λk.
A RDRG is illustrated in the upper left picture of Figure 1.

Given the inherent periodicity in the influential Watts-Strogatz model, it is
natural to define a periodic version of the RDRG model in the following manner.

Definition 2.2 For a given decay function, f , that maps from {1, 2, . . . , N − 1}
to [0, 1], the periodic RDRG, or pRDRG, model generates an edge between nodes

i and j with independent probability f(min{|j − i|, N − |j − i|}).

Here we have defined a pRDRG by using periodic lattice distance, or periodic
range, in the decay function, so, for example, nodes 1 and N are a unit distance
apart; in the RDRG their separation distance would be N − 1. The upper left
picture in Figure 2 illustrates a pRDRG.

We will show that pRDRGs not only form a useful class of test networks, but
can also be used to motivate a measure of periodicity.

3 Spectral Reordering

In addition to proposing a model, Grindrod [10] pointed out that there is, in
practice, the need to solve a related inverse problem.

In situations where edges represent observed interactions, they are typically
presented in some contrived or arbitrary order. So given such a dataset, it is
of interest to look for a new node ordering that reveals a “regular lattice plus
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short cuts” pattern. (This concept is illustrated on real biological data in sec-
tion 5.) This locates (near) cliques close together in the embedded lattice, allow-
ing for some long range edges. The resultant ordering and the inferred interac-
tion “ranges” provide insight resulting directly from the imposition of the RDRG
structure on the data.

To achieve this in the case of linear structure, Grindrod proposed a discrete
reordering technique that attempted to optimize a log likelihood function (that
given in (7) below); essentially tackling a discrete optimization problem by genetic
search. Higham [12] showed that existing spectral reordering algorithms can be
much quicker and more effective. We note that very similar aims arise in many
other application areas, including pattern recognition [22], data mining [7], high
performance computing [30] and sparse matrix computations [6, 15]. In this work,
our aims are

1. to develop a spectral algorithm that reveals “regular lattice plus short cuts”
in the case where the underlying regular lattice has a periodic, rather than
linear, structure,

2. to devise a computational test that determines whether a network is inher-
ently more linear or periodic.

Suppose that A = (aij) ∈ R
N×N denotes the adjacency matrix for an un-

weighted, undirected graph with N nodes; so aij = aji = 1 if nodes i and j
share an edge and aij = aji = 0 otherwise. A spectral reordering approach can
be motivated by the idea of finding a permutation vector p (a vector containing
each integer from 1 to N) so as to minimize the two-sum

∑N
i=1

∑N
j=1(pi − pj)

2aij

[4, 12, 13, 25, 27, 30]. Here, we must seek p so that the edges tend to arise between
nodes that are close in this new ordering. In matrix terms, we require nonzeros to
lie near the diagonal in the reordered adjacency matrix. This discrete optimiza-
tion problem is computationally intractable for large networks, but by relaxing
to an optimization over real-valued vectors p ∈ R

N , and imposing suitable con-
straints, we obtain a quadratic positive semi-definite problem that can be solved
with an eigenvector. We could look for a periodic version of the two-sum, such
as

∑N
i=1

∑N
j=1 (min(|pi − pj|, N − |pi − pj|))2 aij . Minimizing this quantity would

encourage nonzeros to lie either near the diagonal or close to the off-diagonal cor-
ners. However, the relaxed version is no longer in the form of a tractable quadratic
variational problem. Instead we will look for motivation from the Watts-Strogatz
model [32], whose k-nearest neighbour ring can be regarded as a one-dimensional
structure embedded into two dimensions. We will therefore look for a projection
of the nodes into R

2 rather than R
1, and then infer a one-dimensional ordering

from the angular polar coordinate.
Spectral projection of the nodes into a low-dimensional space is itself a well-

studied problem, with many algorithmic variants [2, 7, 17, 22, 24, 27, 30]. Here we
outline an approach based on the normalized Laplacian that we have found to be
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useful. For more detail, the reference [17] covers projection into more than one
dimension, and [14] looks at unnormalized versus normalized Laplacians. Our
starting point is to consider mapping the kth node into position (xk, yk)

T ∈ R
2

by solving the minimization problem

min
N

∑

i=1

N
∑

j=1

∣

∣

∣

∣

∣

∣

∣

∣

(

xi

yi

)

−
(

xj

yj

)
∣

∣

∣

∣

∣

∣

∣

∣

2

2

aij ,

where ‖ · ‖ denotes the Euclidean vector norm. Here, we are attempting to place
nodes close together if they are connected by an edge. Let x = (x1, . . . , xN )T and
y = (y1, . . . , yN)T . Then our expression may be re-written

min
(

xT (D − A)x + yT (D − A)y
)

, (1)

where D is the N × N diagonal matrix, diag(d1, . . . , dN), containing the vertex

degrees di =
∑N

j=1 aij . We let D
1

2 denote the corresponding half power of D:

diag(d
1

2

1 , . . . , d
1

2

N). We also set 1 ∈ R
N to be the vector with each component

equal to one.
To avoid trivial solutions and redundancy, we must add some constraints.

First, we must normalize the vectors x and y to keep them away from the origin.
We impose

xT Dx = 1 and yTDy = 1. (2)

Here, scaling each component by the corresponding node degree has the effect of
down-playing the influence of highly connected nodes. Second, we use

1T D
1

2 x = 0 and 1T D
1

2 y = 0, (3)

to ensure that the nodes are well spread, with the
√

di scaling forcing relatively
well connected nodes to lie closer the origin.

It follows from standard linear algebra arguments, see, for example, [17], that

(1) with (2)–(3) has solution given by x = D
1

2 v[2] and y = D
1

2 v[3], where the

normalized Laplacian, D− 1

2 (D − A)D− 1

2 , has eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λN

with corresponding eigenvectors v[1], v[2], . . . , v[N ]. By construction, λ1 = 0 and
v[1] = D

1

21/‖D 1

21‖. The eigenvalues are bounded above by 2, and λ2 > 0 if and
only if the underlying network is connected [30].

We may therefore summarize our new algorithm for computing a permutation
vector p that gives a periodic reordering as follows.
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Figure 1: Linear (RDRG) with N = 100 and λ = 0.9 (upper left) and its linear
(lower left) and periodic (lower right) reorderings. Scatter plots of v[2] and v[3]

(upper right).

Periodic Reordering Algorithm

1 Compute a subdominant eigenvector pair x := v[2] and y := v[3] for the nor-
malized Laplacian D− 1

2 (D − A)D− 1

2 .

2 Let θi = tan−1 (yi/xi).

3 Construct a permutation vector p according to pi ≤ pj ⇐⇒ θi ≤ θj .

For comparison, a corresponding linear version [14, 22, 24, 27, 30] could be
written:

Linear Reordering Algorithm

1 Compute a subdominant eigenvector x := v[2].

2 Construct a permutation vector p according to pi ≤ pj ⇐⇒ xi ≤ xj .
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Figure 2: Periodic (pRDRG), with N = 100 and λ = 0.9 (upper left) and its
linear (lower left) and periodic (lower right) reorderings. Scatter plots of v[2] and
v[3] (upper right).

These algorithms are illustrated in Figures 1 and 2. The upper left picture
in Figure 1 shows a RDRG with N = 100 and λ = 0.9. The upper right picture
scatter plots the components of v[2] and v[3]. It is clear that the normalized Fiedler
vector, v[2], does a good job of uncovering the linear ordering, and v[3] can add
nothing further. The lower left picture shows the matrix reordered according
to the linear reordering algorithm, and the linear range-dependent structure is
apparent. The lower right picture shows the result of the periodic reordering
algorithm. In this case the algorithm has encouraged some nonzeros into the
off-diagonal corners, but we see an unnatural break in the node density as we
look down the diagonal.

We emphasize that in practice, we would not expect to be given the matrix
with the “correct” ordering shown in the upper left picture. Instead, the nodes
would arrive in some arbitrary order [10, 12], and our task is to find the hid-
den structure. However, v[2] and v[3] are invariant under reordering (which, of
course, corresponds to a similarity transformation), and hence the algorithms
would perform exactly the same way if we started with any other node order.
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In Figure 2 we change to a pRDRG. In this case it is clear that both v[2] and
v[3] carry useful reordering information. The linear algorithm is forced to increase
the spread of nonzeros, whereas the periodic algorithm packs them tightly along
the diagonal or in the off-diagonal corners.

4 Likelihood Ratio

In Figures 1 and 2 it is visually obvious whether the graphs are inherently linear
or periodic and whether one algorithm is more appropriate than the other. For
real networks, of course, the issue will not be so clear cut. The idea in this
section is to develop a test that gives a quantitative answer to the linear versus
periodic question. Such inference issues require assumptions to be made, either
implicitly or explicitly [23], and we will start by assuming that the network comes
either from one of the RDRG or pRDRG classes, each with a geometric decay
function. We note that Grindrod [10] used the RDRG model in order to define an
objective function that could be maximized over all possible orderings; and to find
the most likely (linear) ordering under the hypothesis that the data comes from
that class. In our case the orderings arise from the two algorithms, corresponding
to alternative hypotheses, in section 3, and we compare

(a) the likelihood of the linear ordering given that the data came from the RDRG
class with geometric decay, and

(b) the likelihood of the periodic ordering given that the data came from the
pRDRG class with geometric decay.

The first step is to fit the geometric decay rate, λ. We do this by matching
the total number of edges in the given network to the expected number of edges
arising in the RDRG and pRDRG models. In the RDRG case, the expected
number of edges is

∑ ∑

j>i λ
j−i, which has the analytic form

Nλ

1 − λ
− λ(1 − λN)

(1 − λ)2
. (4)

In the pRDRG case, the expected number of edges,
∑ ∑

j>i λ
min(j−i,N−j−i), has

the form
Nλ

1 − λ
− Nλ(N+1)/2

1 − λ
(5)

when N is odd and
Nλ

1 − λ
− 1 + λ

1 − λ

N

2
λN/2, (6)

when N is even. In each case a monotonically increasing scalar function in λ
must be matched to the given edge count, so it is a simple numerical task to
produce the values λlin and λper for the linear and periodic models, respectively.
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Then for any reordering i 7→ pi, the likelihood of this network arising for the
RDRG model is

Llin(p) :=
∏

edge pi↔pj

λ
|pi−pj |
lin

∏

no edge pi↔pj

(

1 − λ
|pi−pj |
lin

)

. (7)

Similarly, for any reordering i 7→ pi, the likelihood of this network arising for the
pRDRG model is

Lper(p) :=
∏

edge pi↔pj

λmin(|pi−pj |, N−|pi−pj |)
per

∏

no edge pi↔pj

(

1 − λmin(|pi−pj|, N−|pi−pj |)
per

)

.

(8)
Effectively, the algorithms from section 3 select suitable reorderings that are

close to maximising Llin(p) and Lper(p) independently. Letting plin and pper denote
the ordering arising from those linear and periodic algorithms, respectively, the
log likelihood ratio, L, is defined as

L =
2

N(N − 1)
log

( Llin(plin)

Lper(pper)

)

, (9)

with a positive ratio indicating that the network is more likely to be linear and
a negative ratio indicating the opposite. Notice that we normalise by the term
N(N −1)/2, representing the number of possible edges, which corresponds to the
number of factors within both (7 ) and (8): this allows us to contrast results for
different sized data sets (if we double N then we roughly quadruple the number
of terms in the sum that forms the log likelihood ratio).

In Figures 1 and 2 we generated RDRG and pRDRG instances with N = 100
and λ = 0.9. In the RDRG case we found λlin = 0.9004 and λper = 0.8908 from
(4) and (5), respectively. Since λlin is the closer to λ = 0.9 and the likelihood
ratio L = 1.75E−2 is positive, we conclude that the network is more likely to be
linear. In the pRDRG case λlin = 0.9091 and λper = 0.8994. Here λper is closest
and the negative likelihood ratio of L = −1.37E−1 supports the hypothesis that
the network is more likely to be periodic.

To test the likelihood ratio further, in Tables 1 and 2 we summarize the
results of a larger scale experiment. Further tests of a more statistical nature are
presented in [11]. Here, we generated instances of RDRG and pRDRG linear and
periodic networks and tested whether the likelihood ratio correctly identified the
appropriate structure. We used dimensions N = 100, 200, 500, 1000, 2000 and a
range of λ values in the interval [0.6, 1); smaller values of λ produce unreasonably
sparse networks—at λ = 0.6 the leading term Nλ/(1 − λ) in (4)–(6) indicates
an average of only 1.5 edges per node. Each entry records the frequency of
successful predictions over 1000 instances of the random graph. We see that
the performance is perfect over a large range of parameter values, and generally
worsens as we increase N for a fixed λ and generally improves as we increase λ for
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N = 100 200 500 1000 2000
λ = 0.6 0.544 0.570 0.532 0.487 0.541
λ = 0.7 0.898 0.904 0.886 0.860 0.763
λ = 0.8 0.964 0.997 1 1 1
λ = 0.9 0.993 1 1 1 1
λ = 0.95 1 1 1 1 1
λ = 0.99 0.995 1 1 1 1
λ = 0.999 0.025 0.184 1 1 1

Table 1: Linear RDRD networks: frequency with which the likelihood ratio cor-
rectly predicted that the network is linear rather than periodic.

N = 100 200 500 1000 2000
λ = 0.6 0.610 0.491 0.466 0.513 0.479
λ = 0.7 0.986 0.987 0.956 0.929 0.756
λ = 0.8 1 1 1 1 1
λ = 0.9 1 1 1 1 1
λ = 0.95 1 1 1 1 1
λ = 0.99 1 1 1 1 1
λ = 0.999 0.718 1 1 1 1

Table 2: PRDRG networks: frequency with which the likelihood ratio correctly
predicted that the network is periodic rather than linear.

a fixed N . This is consistent with the fact that decreasing the sparsity provides
more information to the algorithm; the same argument accounts for the slightly
improved performance on periodic networks in Table 2 over linear in Table 1. Of
course, at the extreme case of λ = 1 all graphs are completely full and hence
there can be no meaningful distinction, which explains the poor performance for
λ = 0.999 and small N .

Overall, Tables 1 and 2 give us some confidence that the biological data sets
to be studied in the next section are amenable to analysis.

5 Biological Data Sets

Existing and improving high throughput technologies in experimental biology
produce large-scale data that are often represented by networks. In protein-
protein interaction (PPI) networks, nodes stand for proteins and edges between
pairs of nodes indicate that, according to results of an experiment, those proteins
interact. We applied the linear and periodic spectral reordering algorithms to
publicly available PPI networks to test whether periodic structure is present in
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PPI sub orig.n red.n orig.edge red.edge λper L
Y11000 103 2401 2137 11000 10816 0.84 -1.39E-02
Y2455 132 988 573 2455 2097 0.79 -1.25E-02
YItoCore 132 786 417 789 511 0.55 -2.83E-02
YUetz 163 991 473 915 543 0.53 -1.23E-02
YItoCoreUetz 160 1417 970 1520 1229 0.56 -9.03E-03
hStelzlH 22 363 314 756 727 0.70 -3.69E-02
hStelzlHM 34 1159 1076 2167 2116 0.66 -5.62E-04
hStelzlHML 47 1529 1411 2667 2594 0.65 1.31E-03
hRual 84 1873 1686 3463 3359 0.66 1.50E-02
hBIND 136 2181 1818 3005 2725 0.60 -9.93E-03
hMINT 109 1753 1446 3113 2896 0.67 -1.23E-02
WCore 58 1356 1218 1983 1902 0.61 -1.80E-02
WZhSt 67 2254 2060 18185 18000 0.90 -1.21E-02

Table 3: Linear versus period reordering for protein-protein interaction data sets.

real world networks and, consequently, close and long-distance neighbours can be
better differentiated with the new algorithm.

We analyzed thirteen PPI networks of three different eukaryotic organisms:
yeast, worm and human. Two yeast PPI networks are described in [31]: a network
defined by the top 11000 interactions (denoted Y11000 in Table 3) and its high
confidence part (Y2455). Here, an increase in confidence corresponds to keeping
only those links that are consistent with other sources of biological data, so higher
confidence networks have fewer edges and should contain fewer false positives. A
further three yeast PPI networks are the “core” from [16], the network from [29]
and the union of both, denoted YItoCore, YUetz and YItoCoreUetz, respectively.

Human PPI networks used in our experiments include three networks of dif-
ferent confidence level: high (hStelzlH), high and medium (hStelzlHM) and high,
medium and low (hStelzlHML) from [26] and a network from [21] (hRual). A
further two networks were downloaded from databases BIND and MINT [3, 33]
(hBIND and hMINT). Finally, two worm PPI networks were tested: WCore de-
notes the worm C. elegans “core” PPI network [18] and WZhSt denotes the worm
PPI network from [34].

Note that PPI networks generally consist of a set of disconnected components
or subnetworks. It is known that if a network has k subnetworks then the lowest
k eigenvalues of the Laplacian (or normalized Laplacian) matrix are zero [5]. The
total number of subnetworks is shown as “sub” in Table 3. In each case we studied
the largest connected subnetwork. Thus, the original number of proteins “orig.n”
and edges “orig.edge” from the published networks were reduced to “red.n” and
“red.edge”, corresponding to the largest subnetworks. The last two columns in
Table 3 show the decay parameter λper (λlin are similar to λper) and log likelihood
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Figure 3: Y11000 - PPI network from [31]: 2137 proteins and 10816 interactions:
original adjacency matrix, the linear and periodic reorderings. The network is
classifed as periodic (L = −1.39E − 02 < 0).

ratio L.
We see from Table 3 that eleven out of the thirteen networks studied, including

the high and high-medium confidence networks, have a negative likelihood ratio,
indicating periodicity. Further, the values of the ratio are comparable with those
arising when we tested data generated from the pRDRG and RDRG models.

To back up these results we now show some qualitative pictures. The Yeast
PPI network Y11000 consists of 11000 interactions between 2401 proteins. There
are 103 subnetworks and the largest component involves 2137 proteins and 10816
interactions. Note that by reducing the original network to its largest subnetwork
we removed only 264 proteins (11%) and 184 edges (1.7%). Figure 3 shows
the adjacency matrices for linear and periodic spectral reorderings of these 2137
proteins. We see that the periodic reordering places interactions (edges) into the
off-diagonal corners, thereby reducing the envelope around the diagonal, relative
to the linear version. This supports the negative likelihood ratio of L = −1.39E−
02.

Figure 4 shows linear and periodic reorderings of YItoCore. The largest com-
ponent consists of 417 proteins (out of 786) and 511 interactions (reduced from
789). This network is very sparse, with less than two edges per node on average.
We obtained narrow envelopes with both reorderings; but in the periodic case the
interactions are more tightly arranged along the diagonal, and this is reflected in
the negative value L = −2.83E − 02.

The human PPI network of 1411 proteins and 2594 interactions at high,
medium and low confidence level, hStelzlHML, is one of the two cases that were
classified as linear rather than periodic, L = 1.31E − 03 > 0. Figure 5 illustrates
the reorderings. We see that the periodic algorithm is not able to place nonzeros
in the off-diagonal corners and does not tighten the envelope around the diagonal.
However, the PPI network with only high confidence interactions (hStelzlH) was
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Figure 4: YItoCore - PPI network from [16]: 417 proteins and 511 interactions.
The network is classified as periodic (L = −2.83E − 02 < 0).
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Figure 5: hStelzlHML - PPI network from [26]: 1411 proteins and 2594 interac-
tions. The network is classified as linear (L = 1.31E − 03 > 0).

classified as periodic L = −3.69E − 02 < 0 rather than linear; see Figure 6.

6 Summary

Our aim here was to develop a new computational tool that finds an underlying
periodic structure, if it exists, in large, complex, sparse networks. The new
algorithm allows for both qualitative plots of the reordered adjacency matrix and
a quantitative likelihood ratio for linear versus periodic structure. Applied to
protein interactions, the algorithm produced strong evidence of periodicity. We
believe that this is a promising approach for extracting meaning from complex
networks, and in the context of bioinformatics it has the potential to reveal new
insights concerning similarity between proteins and the nature of ‘long range’ and
‘short range’ interactions, both of which could be followed up experimentally.
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Figure 6: hStelzlH - PPI network from [26]: 314 proteins and 727 interactions.
The network is classifed as periodic (L = −3.69E − 02 < 0).
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