Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Compensation effect for the kinetics of adsorption/desorption of gases/vapors on microporous carbon materials

Fletcher, A.J. and Thomas, K.M. (2000) Compensation effect for the kinetics of adsorption/desorption of gases/vapors on microporous carbon materials. Langmuir, 16 (15). pp. 6253-6266. ISSN 0743-7463

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Preliminary studies of adsorption kinetics on activated carbon provided some tentative evidence for a possible compensation effect where the activation energies and In(preexponential factors) obtained from the Arrhenius equation obey a linear correlation. However, a detailed analysis was not carried out. The adsorption characteristics of a series of n-alcohol vapors on the activated carbon BAX950 were investigated over the relative pressure range p/p(o) = 0-0.97, for temperatures in the range 288-318 K. These data, in combination with our previous results for water, n-octane, and n-nonane adsorption provide a comprehensive adsorption kinetic study on an active carbon covering a full range of adsorptives with varying hydrophilic/hydrophobic character to establish the general validity, applicability, and mechanism of the compensation effect. The results are discussed with reference to the pore structure and the adsorption mechanism. Detailed comparisons show that the compensation effect is a general phenomenon for adsorption and desorption on microporous carbons and may extend further to other porous systems.