Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Compensation effect for the kinetics of adsorption/desorption of gases/vapors on microporous carbon materials

Fletcher, A.J. and Thomas, K.M. (2000) Compensation effect for the kinetics of adsorption/desorption of gases/vapors on microporous carbon materials. Langmuir, 16 (15). pp. 6253-6266. ISSN 0743-7463

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Preliminary studies of adsorption kinetics on activated carbon provided some tentative evidence for a possible compensation effect where the activation energies and In(preexponential factors) obtained from the Arrhenius equation obey a linear correlation. However, a detailed analysis was not carried out. The adsorption characteristics of a series of n-alcohol vapors on the activated carbon BAX950 were investigated over the relative pressure range p/p(o) = 0-0.97, for temperatures in the range 288-318 K. These data, in combination with our previous results for water, n-octane, and n-nonane adsorption provide a comprehensive adsorption kinetic study on an active carbon covering a full range of adsorptives with varying hydrophilic/hydrophobic character to establish the general validity, applicability, and mechanism of the compensation effect. The results are discussed with reference to the pore structure and the adsorption mechanism. Detailed comparisons show that the compensation effect is a general phenomenon for adsorption and desorption on microporous carbons and may extend further to other porous systems.