Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks

Zhao, X.B. and Xiao, B. and Fletcher, A.J. and Thomas, K.M. and Bradshaw, D. and Rosseinsky, M.J. (2004) Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks. Science, 306 (5698). pp. 1012-1015. ISSN 0036-8075

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Adsorption and desorption of hydrogen from nanoporous materials, such as activated carbon, is usually fully reversible. We have prepared nanoporous metal-organic framework materials with flexible linkers in which the pore openings, as characterized in the static structures, appear to be too small to allow H2 to pass. We observe hysteresis in their adsorption and desorption kinetics above the supercritical temperature of H2 that reflects the dynamical opening of the "windows" between pores. This behavior would allow H2 to be adsorbed at high pressures but stored at lower pressures.