Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Assembly of heterometallic clusters and coordination polymers by combining Mo-S-based clusters with Mn2+

Lin, Ping and Clegg, William and Harrington, Ross W. and Henderson, Richard A. and Fletcher, Ashleigh J. and Bell, Jon and Thomas, K. Mark (2006) Assembly of heterometallic clusters and coordination polymers by combining Mo-S-based clusters with Mn2+. Inorganic Chemistry, 45 (10). pp. 4284-4302. ISSN 0020-1669

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Addition of [(Mo2O2S2)-O-V(edt)(2)](2-) (edt) 1,2-ethanedithiolate) to acetonitrile and/ or methanol solutions of Mn-II containing bipyridines [4,4'-trimethylenedipyridine (TDP), 4,4'-bipyridine (4,4'-bpy), 2,2'-bipyridine (2,2'-bpy)] or 15-crown-5 produces three new heterometallic cluster coordination polymers, [Mn-2{Mo2O2S2(edt)(2)}(2)( TDP)(3)(CH3OH)(2)( NCMe)(2)], 3CH3OH center dot 0.25MeCN (1), [Mn(TDP)(2)(H2O)(2)](2+)[Mn{Mo2O2S2(edt)(2))(2)(TDP)(2)}](2-), 6CH(3)OH (2), [Mn{Mo2O2S2(edt)(2)}(TDP)(2)( CH3OH)(H2O)]center dot CH3OH (3), and three new multinuclear clusters, [Mn{Mo2O2S2(edt)(2)}(4,4'-bpy)(CH3OH)(4)]center dot 0.5(4,4'-bpy) (4), [Mn{Mo2O2S2(edt)(2)}(2,2'-bpy)(2)]center dot 2CH(3)OH ( 5), and (NEt4)(2)[Mn(15-crown-5) {Mo2O2S2(edt)(2)}(2)] ( 6). All compounds were characterized by X-ray crystallography. The coordination mode of Mn in these compounds depends on the ligands and the crystallization conditions. Compound 2 readily converts to 1 or 3 depending on the reaction and solvent conditions. Compounds 1 and 2 were analyzed using thermogravimetric analysis combined with mass spectroscopy (TG-MS) in the temperature range 25-500 degrees C. The room-temperature magnetic moments for compounds 1-6 were determined.