Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Adsorption of organic vapour pollutants on activated carbon

Fletcher, A.J. and Kennedy, M.J. and Zhao, X.B. and Bell, Jon and Thomas, K.M. (2008) Adsorption of organic vapour pollutants on activated carbon. In: Recent Advances in Adsorption Processes for Environmental Protection and Security. Nato Science for Peace and Security Series C - Environmental Security . Springer Netherlands, Dordrecht, The Netherlands, pp. 29-54. ISBN 9781402068034

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Emissions of organic vapor pollutants, arising mainly from anthropogenic sources have major environmental impact and the low emission levels required by increasingly stringent legislation are difficult to achieve. Adsorption on activated carbon can be used as a final stage for removal of very low concentrations of volatile organic pollutants present in air and gas streams. Isotherms and adsorption kinetics for a range of carbons with different porous structures and volatile organic compounds (VOCs) with a range of properties provide an improved understanding of the relationship between pore structure, adsorptive properties and adsorption characteristics. Competitive adsorption of other species present in gas flows, in particular water vapor, reduces adsorption capacity and kinetics. Laboratory measurements, which simulate process conditions, for example, very low vapor pressure, high temperature and competitive adsorption; provide an insight into the mechanisms associated with adsorption processes allowing process optimization.