Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Proprioception and muscle torque deficits in children with hypermobility syndrome

Fatoye, F. and Palmer, S. and Macmillan, F. and Rowe, P.J. and Van der Linden, M.L. (2009) Proprioception and muscle torque deficits in children with hypermobility syndrome. Rheumatology, 48 (2). pp. 152-157. ISSN 1462-0324

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Sensorimotor deficits such as impaired joint proprioception and muscle weakness have been found in association with hypermobility syndrome (HMS) in adults. HMS is more common in children than adults, yet such deficits have not been adequately investigated in paediatric populations. It is therefore uncertain as to what sensorimotor deficits are present in children with HMS. This study investigated knee joint proprioception and muscle torque in healthy children and those with HMS. Thirty-seven healthy children (mean age +/- s.d. = 11.5 +/- 2.6 yrs) and 29 children with HMS (mean age +/- s.d. = 11.9 +/- 1.8 yrs) participated in this study. Knee joint kinaesthesia (JK) and joint position sense (JPS) were measured, with the absolute angular error (AAE) calculated as the absolute difference between the target and perceived angles. Knee extensor and flexor muscle torque was assessed and normalized to body mass. Mann-Whitney U-tests were performed to compare JK, JPS and muscle torque between the two groups. Children with HMS had significantly poorer JK and JPS compared with the controls (both P < 0.001). Knee extensor and flexor muscle torque was also significantly reduced (both P < 0.001) in children with HMS compared with their healthy counterparts. The findings of this study demonstrated that knee joint proprioception was impaired in children with HMS. They also had weaker knee extensor and flexor muscles than healthy controls. Clinicians should be aware of these identified deficits in children with HMS, and a programme of proprioceptive training and muscle strengthening may be indicated.