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Abstract 
We discuss the importance of spatial and temporal variations in particle volume 

fraction in understanding the force response of concentrated colloidal suspensions and 

granular materials. 
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Two major themes of the Discussion Meeting, arising particularly from the papers 

presented by Pouliquen (2009), Menon (2009), and Bonn (2009), were how colloidal 

systems and granulars differed, especially with regard to the importance of dilation in 

granular response; and the role and use of system volume fraction Φ. In this 

contribution I wish to further consider the role of the volume fraction and how it is 

discussed and used, with particular relevance to the dilation response of concentrated 

colloidal suspensions and how this compares with dilation in dry and wet granulars.  

 

Considering measurements/control of Φ, Poon (2009) pointed out that experimental 

volume fractions quoted for colloidal systems were unavoidably prone to imprecision: 

care must be taken to avoid ascribing particular numerical values greater importance 

than warranted. This is particularly important near the apparent colloidal glass 

transition, where rheological and dynamic properties become extremely sensitive to 

exact values of Φ.  

 

The key point of this contribution is that spatial heterogeneity in volume fraction is an 

important and usually neglected aspect of concentrated particulates. Most discussion 

of Φ treats this parameter as a single global characteristic of a system. When 

discussing the regime of very high concentration, ie the colloidal glass transition, 

granular jamming, and close-packing limits, this use of Φ is too simplistic. All 

systems exhibit spatial and temporal variations of local volume fraction (Haw 2006) 

(a truly close-packed frozen system will still exhibit spatial but not temporal 

variation). Particularly in concentrated systems a single global value of volume 

fraction does not adequately characterise a particulate system since, due to the 

rheological and dynamical sensitivity to Φ already mentioned, small variations in 

local Φ imply potentially large variations in local response. Variations and 



fluctuations in local Φ cannot be ignored (Haw 2006). Of course, global variations in 

Φ may also be important, eg in shear banding phenomena (Moller et al. 2008). 

 

In the Discussion Meeting Cates (2009) raised the question of whether one difference 

between colloidal and granular systems might be the impossibility of a fixed-volume 

colloidal fluid responding by dilation: given an incompressible solvating fluid, and no 

free surfaces eg fluid interfaces (Cates et al. 2005), total volume must be conserved. 

Recent experiments demonstrate that rheological jamming in cornstarch suspensions 

(not strictly colloidal) is directly associated with global dilation (Fall et al. 2008). 

Consideration of local variations in volume fraction illustrates that dilation can 

happen in colloidal suspensions, albeit local dilation rather than global, even in a 

confined geometry such as a channel flow (Haw 2004). Local regions of the system 

may dilate in order to deform in response to stress, while other regions become more 

concentrated (compress) to conserve total volume. There is evidence of this effect in 

converging channel flow experiments (Haw 2004), although to my knowledge direct 

microscopic measurements are lacking. These are challenging because exact 

resolution of (usually polydisperse) particle volumes is required to give precise values 

of local Φ. Such resolution at sub-micron scale in optical microscopy is difficult and 

in practice most confocal techniques deliver particle centre coordinates only. 

 

One might argue that the experiments in Haw (2004) involve extensional strain and an 

essentially inhomogeneous stress, therefore encouraging inhomogeneous response, ie 

local dilation: the heterogeneity of the geometry and stress generate heterogeneous 

response. A homogeneous stress such as in simple shear might seem less likely to 

create local variations in response, ie local dilations and compressions. Recent shear-

banding experiments show that even a homogeneous stress field can lead to variations 

in response (Moller et al. 2008), ie shear-banding phenomena are intrinsic to the fluid, 

not to the geometry or stress field. Furthermore, recall that variations in local volume 

fraction are present even in an unstressed, globally homogeneous system, and hence 

variations in response even to a homogeneous stress may certainly be expected. 

 

Local dilation in a colloid or wet granular has a further physical consequence in 

contrast to a dry granular system: the necessity for interstitial fluid flow from the 

compressed region into the dilated region. This is effectively a porous-medium flow 

which introduces a new timescale into the problem, determined by the fluid viscosity 

and the local volume fractions/configurations of compressed and dilated regions 

between which the fluid flows. Additionally there is the possibility of temporary 

dilation hardening. In the geophysical literature, for example, dilation hardening has 

been suggested as important in earthquake response (eg Whitcomb et al. 1973, 

Rudnicki and Rice 1975, Rice 1975, Rudnicki and Chen 1988). Highly shear-stressed 

regions of porous rocks or soil must first dilate to allow shear deformation. Interstitial 

fluid must therefore flow from compressed to dilated zones. Rather than immediately 

suffer shear deformation, however, dilated zones can be temporarily ‘hardened’ by the 

temporary imbalance of pore pressure between their dilated insides and surrounding 

compressed regions: there is an effective compressive stress acting on the dilated 

region, temporarily strengthening it against shear deformation and delaying the shear 

strain response. (This is somewhat reminiscent of the capillary-pressure stabilised 

granulation mechanism proposed in Cates et al., 2005.) However, once pore pressure 

is equilibrated by interstitial fluid transfer, the hardening stress returns to zero and the 

dilated region is no longer strengthened against shear deformation: this is when the 



actual earthquake shear strain occurs. Measurements of variation in sound speed prior 

to earthquake strain support this temporary dilation hardening picture for wet 

granulars/porous rocks. Clearly the presence of fluid, combined with local dilation, 

may have significant physical effects not present in dry granulars, while even in dry 

granulars the presence of interstitial air has important effects, though here the fluid is 

compressible in contrast to the usual situation in colloids and wet granulars (eg 

Burtally et al. 2002, Muite et al. 2004, LePennec et al. 1998).   

 

Is this relevant to colloidal suspensions? The experiments in Cates et al. (2005), Fall 

et al. (2008) and Haw (2004), as well as a venerable rheological literature (eg Metzner 

and Whitlock 1958) demonstrate that concentrated suspensions are ‘naturally’ prone 

to respond by dilation. Even in a fixed-volume geometry, local dilations/ 

compressions are possible, and will be encouraged even in a homogeneous flow by 

unavoidable spatial variations in local volume fraction, to which response and 

dynamics will be particularly susceptible around the ‘divergence’ of the glass 

transition. It seems reasonable therefore that dilation/fluid effects important in wet 

granulars will also be important in concentrated colloids. Experiments are underway 

to test for the presence of dilation hardening in model colloidal systems (Haw, 

Campbell and Thomson, unpublished). 

 

In conclusion, the high concentration response of colloidal suspensions may not be 

comprehensible if we insist that the volume fraction be treated as a single global 

parameter. Accepting that this parameter varies spatially and temporally may help us 

understand response and dynamics (indeed may even have relevance in explaining the 

link between the bulk dynamic glass transition and local crystal nucleation in hard 

spheres [Haw 2006, Pusey 2009]), and also indicates the importance of considering 

the role of the solvating fluid in colloids and wet granulars. 
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