Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Clay fine fissuring monitoring using miniature geo-electrical resistivity arrays

Sentenac, P. and Zielinski, M. (2009) Clay fine fissuring monitoring using miniature geo-electrical resistivity arrays. Environmental Earth Sciences, 59 (1). pp. 205-214. ISSN 1866-6280

[img]
Preview
PDF (strathprints013524.pdf)
strathprints013524.pdf

Download (919kB) | Preview

Abstract

Abstract This article describes a miniaturised electrical imaging (resistivity tomography) technique to map the cracking pattern of a clay model. The clay used was taken from a scaled flood embankment built to study the fine fissuring due to desiccation and breaching process in flooding conditions. The potential of using a miniature array of electrodes to follow the evolution of the vertical cracks and number them during the drying process was explored. The imaging technique generated two-dimensional contoured plots of the resistivity distribution within the model before and at different stages of the desiccation process. The change in resistivity associated with the widening of the cracks were monitored as a function of time. Experiments were also carried out using a selected conductive gel to slow down the transport process into the cracks to improve the scanning capabilities of the equipment. The main vertical clay fissuring network was obtained after inversion of the experimental resistivity measurements and validated by direct observations.