Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Weighted density functional theory for simple fluids: supercritical adsorption of a Lennard-Jones fluid in an ideal slit pore

Sweatman, M.B. (2001) Weighted density functional theory for simple fluids: supercritical adsorption of a Lennard-Jones fluid in an ideal slit pore. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 63 (3). 031102. ISSN 1063-651X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The adsorption of a Lennard-Jones fluid in an ideal slit pore is studied using weighted density functional theory. The intrinsic Helmholtz free-energy functional is separated into repulsive and attractive contributions. Rosenfeld's accurate fundamental measure functional is employed for the repulsive functional while another weighted density functional method is employed for the attractive functional. This other method requires an accurate equation of state for the bulk fluid and an accurate pair-direct correlation function for a uniform fluid, determined analytically or numerically. The results for this theory are compared against mean-field density functional theory and grand canonical ensemble simulation results, modeling the adsorption of ethane in a graphite slit. The results indicate that the weighted density functional method applied to the attractive functional can offer a significant increase in accuracy over the mean-field theory.