Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Numerical simulation of rivulet evolution on a horizontal cable subject to an external aerodynamic field

Robertson, A.C. and Taylor, I.J. and Wilson, S.K. and Duffy, B.R. and Sullivan, J.M. (2010) Numerical simulation of rivulet evolution on a horizontal cable subject to an external aerodynamic field. Journal of Fluids and Structures, 26 (1). pp. 50-73. ISSN 0889-9746

PDF (JFS_2010)
JFS_2010.pdf - Published Version

Download (1MB) | Preview


On wet and windy days, the inclined cables of cable-stayed bridges may experience a large amplitude oscillation known as rain-wind-induced vibration (RWIV). It has previously been shown by in situ and wind-tunnel studies that the formation of rain-water accumulations or ‘rivulets’ at approximately the separation points of the external aerodynamic flow field and the resulting effect that these rivulets have on this field may be one of the primary mechanisms for RWIV. A numerical method has been developed to undertake simulations of certain aspects of RWIV, in particular, rivulet formation and evolution. Specifically a two-dimensional model for the evolution of a thin film of water on the outer surface of a horizontal circular cylinder subject to the pressure and shear forces that result from the external flow field is presented. Numerical simulations of the resulting evolution equation using a bespoke pseudo-spectral solver capture the formation of two-dimensional rivulets, the geometry, location and growth rate of which are all in good agreement with previous studies. Examinations of how the distribution and magnitude of aerodynamic loading and the Reynolds number influence the rivulet temporal evolution are undertaken, the results of which indicate that while all three affect the temporal evolution, the distribution of the loading has the greatest effect.

Item type: Article
ID code: 13464
Keywords: rain-wind-induced, vibration, circular cylinder, numerical simulation, pseudo-spectral method, thin-film approximation, Mechanical engineering and machinery, Bridge engineering, Mechanical Engineering
Subjects: Technology > Mechanical engineering and machinery
Technology > Bridge engineering
Department: Faculty of Science > Mathematics and Statistics
Faculty of Engineering > Mechanical and Aerospace Engineering
Faculty of Science > Mathematics and Statistics > Mathematics
Depositing user: Ms Katrina May
Date Deposited: 18 Dec 2009 13:35
Last modified: 05 Jan 2016 19:06
Related URLs:

Actions (login required)

View Item View Item