Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

A topological separation condition for fractal attractors

Bedford, Tim and Borodachov, S. and Geronimo, J. (2010) A topological separation condition for fractal attractors. UNSPECIFIED. (Unpublished)

PDF (strathprints013423.pdf)

Download (286kB) | Preview


We consider finite systems of contractive homeomorphisms of a complete metric space, which are non-redundant on every level. In general this separation condition is weaker than the strong open set condition and is not equivalent to the weak separation property. We prove that this separation condition is equivalent to the strong Markov property (see definition below). We also show that the set of N-tuples of contractive homeomorphisms, which are non-redundant on every level, is a G set in the topology of pointwise convergence of every component mapping with an additional requirement that the supremum of contraction coefficients of mappings be strictly less than one. We give several sufficient conditions for this separation property. For every fixed N-tuple of d×d invertible contraction matrices from a certain class, we obtain density results for N-tuples of fixed points which define N-tuples of mappings non-redundant on every level.