Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

A topological separation condition for fractal attractors

Bedford, Tim and Borodachov, S. and Geronimo, J. (2010) A topological separation condition for fractal attractors. UNSPECIFIED. (Unpublished)

[img]
Preview
PDF (strathprints013423.pdf)
strathprints013423.pdf

Download (286kB) | Preview

Abstract

We consider finite systems of contractive homeomorphisms of a complete metric space, which are non-redundant on every level. In general this separation condition is weaker than the strong open set condition and is not equivalent to the weak separation property. We prove that this separation condition is equivalent to the strong Markov property (see definition below). We also show that the set of N-tuples of contractive homeomorphisms, which are non-redundant on every level, is a G set in the topology of pointwise convergence of every component mapping with an additional requirement that the supremum of contraction coefficients of mappings be strictly less than one. We give several sufficient conditions for this separation property. For every fixed N-tuple of d×d invertible contraction matrices from a certain class, we obtain density results for N-tuples of fixed points which define N-tuples of mappings non-redundant on every level.