Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Evolving graphs : dynamical models, inverse problems and propagation

Grindrod, Peter and Higham, D.J. (2010) Evolving graphs : dynamical models, inverse problems and propagation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466 (2115). pp. 753-770. ISSN 1364-5021

[img]
Preview
PDF (strathprints013407.pdf)
strathprints013407.pdf

Download (818kB) | Preview

Abstract

Applications such as neuroscience, telecommunication, on-line social networking, transport and retail trading give rise to connectivity patterns that change over time. In this work we address the resulting need for network models and computational algorithms that deal with dynamic links. We introduce a new class of evolving range-dependent random graphs that gives a realistic but tractable framework for modeling and simulation. We develop a spectral algorithm for calibrating a set of edge ranges from a sequence of network snapshots, and give a proof of principle illustration on some neuroscience data. We also show how the model can be used computationally and analytically to investigate the scenario where an evolutionary process, such as an epidemic, takes place on an evolving network. This allows us to study the cumulative effect of two distinct types of dynamics.