Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Asymptotic behaviour of randomly reflecting billiards in unbounded tubular domains

Menshikov, Mikhail V. and Vachkovskaia, M. and Wade, A.R. (2008) Asymptotic behaviour of randomly reflecting billiards in unbounded tubular domains. Journal of Statistical Physics, 132 (6). pp. 1097-1133. ISSN 0022-4715

[img]
Preview
PDF (strathprints013394.pdf)
strathprints013394.pdf

Download (358kB) | Preview

Abstract

We study stochastic billiards in infinite planar domains with curvilinear boundaries: that is, piecewise deterministic motion with randomness introduced via random reflections at the domain boundary. Physical motivation for the process originates with ideal gas models in the Knudsen regime, with particles reflecting off microscopically rough surfaces. We classify the process into recurrent and transient cases. We also give almost-sure results on the long-term behaviour of the location of the particle, including a super-diffusive rate of escape in the transient case. A key step in obtaining our results is to relate our process to an instance of a one-dimensional stochastic process with asymptotically zero drift, for which we prove some new almost-sure bounds of independent interest. We obtain some of these bounds via an application of general semimartingale criteria, also of some independent interest.