Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Verification of the geographical origin of European butters using PTR-MS

Macatelli, Melina and Akkermans, Wies and Koot, Alex and Buchgraber, Manuela and Paterson, A. and Van Ruth, Saskia (2009) Verification of the geographical origin of European butters using PTR-MS. Journal of Food Composition and Analysis, 22 (2). pp. 169-175. ISSN 0889-1575

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In the present study, proton transfer reaction-mass spectrometry (PTR-MS) in combination with partial least square-discriminant analysis (PLS-DA) was evaluated as a method for the prediction of the origin of European butters. Eighty-three commercial butters from three European regions were subjected to headspace analysis using PTR-MS. Data were collected for the mass range m/z 20-150 using a dwell time of 0.2 s mass−1, resulting in a cycle time just under 30 s. The log transformed headspace concentrations of the masses were subjected to PLS-DA in order to estimate classification models for the butter samples. One model predicted the region of origin; a second set of models predicted dichotomously whether or not a butter originated from a particular EU country. The performance of each model was evaluated by means of a 10-fold double cross validation procedure. For 76% of the butters the region of origin was predicted correctly in the cross validation. The success rate of the countries, averaged over all dichotomous models, was 88% but large differences between countries were observed. Additional work is required to study the underlying factors that determine the geographical differences in butter volatile compositions.