Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Selective arterial dilatation by glyceryl trinitrate is not associated with nitric oxide formation in vitro

Miller, Mark R. and Grant, Stuart and Wadsworth, Roger M. (2008) Selective arterial dilatation by glyceryl trinitrate is not associated with nitric oxide formation in vitro. Journal of Vascular Research, 45 (5). pp. 375-385. ISSN 1018-1172

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Glyceryl trinitrate (GTN) is the most commonly used anti-anginal agent, yet its mechanism of action has still to be fully established. Release of nitric oxide (NO) and the selectivity of GTN in the venous system are believed to be crucial to this drug's anti-anginal action. Methods: Rat superior mesenteric arteries and renal veins were mounted in a wire myograph with an intraluminal NO microsensor. Results: In the superior mesenteric arteries, GTN (1 nM to 10 µM) produced a dose-dependent vasodilatation without NO release, except at concentrations supramaximal for relaxation. GTN was found to be markedly less potent in a wide range of veins tested, and lowering the oxygen concentrations in the myograph to that of the venous system did not improve the venodilator activity of GTN. Conclusion: This is the first time that NO release from GTN has been monitored electrochemically in real time, simultaneously with vasodilatation. Unlike the endothelium-dependent vasodilator carbachol, NO could only be measured at concentrations of GTN that are supramaximal for relaxation. GTN was found to be arterioselective in vitro, even when oxygen levels were lowered to mimic those of the venous system in vivo