Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Selective arterial dilatation by glyceryl trinitrate is not associated with nitric oxide formation in vitro

Miller, Mark R. and Grant, Stuart and Wadsworth, Roger M. (2008) Selective arterial dilatation by glyceryl trinitrate is not associated with nitric oxide formation in vitro. Journal of Vascular Research, 45 (5). pp. 375-385. ISSN 1018-1172

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Glyceryl trinitrate (GTN) is the most commonly used anti-anginal agent, yet its mechanism of action has still to be fully established. Release of nitric oxide (NO) and the selectivity of GTN in the venous system are believed to be crucial to this drug's anti-anginal action. Methods: Rat superior mesenteric arteries and renal veins were mounted in a wire myograph with an intraluminal NO microsensor. Results: In the superior mesenteric arteries, GTN (1 nM to 10 µM) produced a dose-dependent vasodilatation without NO release, except at concentrations supramaximal for relaxation. GTN was found to be markedly less potent in a wide range of veins tested, and lowering the oxygen concentrations in the myograph to that of the venous system did not improve the venodilator activity of GTN. Conclusion: This is the first time that NO release from GTN has been monitored electrochemically in real time, simultaneously with vasodilatation. Unlike the endothelium-dependent vasodilator carbachol, NO could only be measured at concentrations of GTN that are supramaximal for relaxation. GTN was found to be arterioselective in vitro, even when oxygen levels were lowered to mimic those of the venous system in vivo