Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Gene inactivation confirms the identity of enzymes involved in nematode phosphorylcholine-N-glycan synthesis

Houston, Katrina M. and Sutharsan, Ratneswary and Steiger, C.N. and Schachter, Harry and Harnett, W. (2008) Gene inactivation confirms the identity of enzymes involved in nematode phosphorylcholine-N-glycan synthesis. Molecular and Biochemical Parasitology, 157 (1). pp. 88-91. ISSN 0166-6851

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

An unusual feature of nematodes is the covalent attachment of immunomodulatory phosphorylcholine (PC) moieties to N-type glycans. Our previous work on the filarial nematode glycoprotein ES-62 has enabled us to predict the identity of enzymes necessary for PC-N-glycan biosynthesis. Here, we addressed these predictions using gene knockout technology applied to C. elegans and present two pieces of confirmatory data. Employing a triple null mutant worm lacking all three genes that encode active UDP-N-acetyl-d-glucosamine: α-3-d-mannoside β1, 2-N-acetylglucosaminyltransferase I (GnT I) we have confirmed our earlier prediction that a crucial step in the generation of the substrate for PC transfer is addition of terminal GlcNAc to the α1-3-linked mannose residue of the glycan by GnT I. Second, by silencing genes responsible for expressing enzymes of the Kennedy pathway of phosphatidylcholine biosynthesis by RNA interference (RNAi), we have confirmed our belief for a role for diacylglycerol: choline phosphotransferase (CPT) in PC-N-glycan biosynthesis.