Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Palladium(II) and platinum(II) complexes formed from C6H4-1,3-(CH2PCy2)2: crystal and molecular structures of [PdX{C6H3-2,6-(CH2PCy2)2}], X = Cl and Br

Cross, R.J. and Kennedy, A.R. and Muir, K.W. (1995) Palladium(II) and platinum(II) complexes formed from C6H4-1,3-(CH2PCy2)2: crystal and molecular structures of [PdX{C6H3-2,6-(CH2PCy2)2}], X = Cl and Br. Journal of Organometallic Chemistry, 487 (1-2). pp. 227-233. ISSN 0022-328X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The reaction of C6H4-1,3-(CH2PCy2)2 (Cy = cyclohexyl) with [PdCl2(NCPh)2] gave mainly [PdCl2C6H4-1,3-(CH2PCy2)2]n which was converted into [PdClC6H3-2,6-(CH2PCy2)2] on prolonged reflux, whereas C6H4-1,3-(CH2PCy2)2 reacted with [PdBr2(PPh3)2] to give mainly [PdBrC6H3-2,6-(CH2PCy2)2]. Only [PtCl2C6H4-1,3-(CH2PCy2)2]n was formed in the analogous reaction with [PtCl2(NCPh)2]. X-ray analysis showed that [PdClC6H3-2,6-(CH2PCy2)2] and [PdBrC6H3-2,6-(CH2PCy2)2] are isostructural. Both molecules display a conformation of the terdentate PCP ligand that is different from that recently reported for several related molecules. It is concluded that the conformation adopted by C6H3-2,6-(CH2PR2)2 ligands appears to be dominated by the steric demand of the phosphorus substituents.