Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Synthesis of aromatase inhibitors and dual aromatase-sulfatase inhibitors by linking an arylsulfamate motif to 4-(4H-1,2,4-triazol-4-ylamino)benzonitrile: SAR, crystal structures, in vitro and in vivo activities

Bubert, C. and Woo, L.W.L. and Sutcliffe, O.B. and Mahon, M.F. and Chander, S.K. and Purohit, A. and Reed, M.J. and Potter, B.V.L. (2008) Synthesis of aromatase inhibitors and dual aromatase-sulfatase inhibitors by linking an arylsulfamate motif to 4-(4H-1,2,4-triazol-4-ylamino)benzonitrile: SAR, crystal structures, in vitro and in vivo activities. ChemMedChem, 3 (11). pp. 1708-1730. ISSN 1860-7179

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

4-(((4-Cyanophenyl)(4H-1,2,4-triazol-4-yl)amino)methyl)phenyl sulfamate (6 a) was the first dual aromatase-sulfatase inhibitor (DASI) reported. Several series of its derivatives with various linker systems between the steroid sulfatase (STS) and the aromatase inhibitory pharmacophores were synthesised and evaluated in JEG-3 cells. The X-ray crystal structures of the aromatase inhibitors, DASI precursors 42 d and 60, and DASI 43 h were determined. Nearly all derivatives show improved in vitro aromatase inhibition over 6 a but decreased STS inhibition. The best aromatase inhibitor is 42 e (IC50=0.26 nM) and the best DASI is 43 e (IC50 aromatase=0.45 nM, IC50 STS=1200 nM). SAR for aromatase inhibition shows that compounds containing an alkylene- and thioether-based linker system are more potent than those that are ether-, sulfone-, or sulfonamide-based, and that the length of the linker has a limited effect on aromatase inhibition beyond two methylene units. Compounds 43 d-f were studied in vivo (10 mg kg-1, single, p.o.). The most potent DASI is 43 e, which inhibited PMSG-induced plasma estradiol levels by 92 % and liver STS activity by 98 % 3 h after dosing. These results further strengthen the concept of designing and developing DASIs for potential treatment of hormone-related cancers.