Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Immunisation with a plasmid DNA vaccine encoding gonadotrophin releasing hormone (GnRH-I) and T-helper epitopes in saline suppresses rodent fertility

Khan, Muhammad A.H. and Ogita, Kazuhide and Ferro, V.A. and Kumasawa, Keiichi and Tsutsui, Takeki and Kimura, Tadashi (2008) Immunisation with a plasmid DNA vaccine encoding gonadotrophin releasing hormone (GnRH-I) and T-helper epitopes in saline suppresses rodent fertility. Vaccine, 26 (10). pp. 1365-1374. ISSN 0264-410X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Research into active immunisation against gonadotrophin releasing hormone (GnRH-I) has gained widespread acceptance as a means of controlling reproduction and behaviour of farm, companion and wild animals. Many studies describe the use of multiple copies of the self-peptide in linear alignment and conjugation with a large carrier protein to increase the immune response to the peptide. However, problems resulting from carrier protein epitope suppression have seen a diversion of interest into the use of genetic materials to elicit an optimum immune response. In this study, a 533-bp long DNA vaccine was constructed in pcDNAV5-HisB coding for 18.871 kDa GnRH-I-T-helper-V5 epitopes fusion protein. COS1 cells transfected with the vaccine construct were found to release fusion protein into culture supernatant. The vaccine construct (100 μg/mice) in saline solution administered into the anterior quadriceps muscle of ICR male and female mice stimulated antigen-specific IgG antibody responses. Testosterone levels in the vaccinated male mice were significantly (p = 0.021) reduced. A significant reduction in uterine implants were noted following mating between immunised males and control females (p = 0.028), as well as between immunised females and control males (p = 0.004). Histological examination of both the male and female gonads in study week 13 showed atrophy of the seminiferous epithelium and suppression of folliculogenesis.