Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

In situ detection of pterins by SERS

Stevenson, Ross and Stokes, Robert J. and MacMillan, Donna and Armstrong, David and Faulds, Karen and Wadsworth, Roger and Kununthur, Suma and Suckling, Colin J. and Graham, Duncan (2009) In situ detection of pterins by SERS. Analyst, 134. pp. 1561-1564. ISSN 0003-2654

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Surface enhanced Raman scattering (SERS) has been used to detect specific pterin molecules at sub-nanomolar concentrations. SERS is fast becoming a widely used technique for the sensitive and specific detection of multiple analytes. The information-rich and concentration-dependent spectra obtained from SERS make the technique ideally placed for high speed, low cost analysis of almost any analyte. Further, to show the feasibility of SERS in the detection of biologically relevant targets, a synthetic pterin analogue of the naturally occurring pterin cofactor, tetrahydrobiopterin, has been detected at a series of concentrations and the method used for the successful detection of the synthetic pterin in mouse serum. In this analysis, spectroscopic collection was optimized for water-based pteridine derivatives using two visible wavelengths of excitation (514.5 and 632.8 nm) and differing mesoscopic metal nanoparticles allowing the limits of detection to be calculated.