Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Designing displaced lunar orbits using low-thrust propulsion

Simo, J. and McInnes, C.R. (2010) Designing displaced lunar orbits using low-thrust propulsion. Journal of Guidance, Control and Dynamics, 33 (1). pp. 259-265. ISSN 0731-5090

[img]
Preview
PDF (strathprints013098.pdf)
strathprints013098.pdf

Download (385kB) | Preview

Abstract

The design of spacecraft trajectories is a crucial task in space mission design. Solar sail technology appears as a promising form of advanced spacecraft propulsion which can enable exciting new spacescience mission concepts such as solar system exploration and deep space observation. Although solar sailing has been considered as a practical means of spacecraft propulsion only relatively recently, the fundamental ideas are by no means new (see McInnes1 for a detailed description). A solar sail is propelled by re ecting solar photons and therefore can transform the momentum of the photons into a propulsive force. This article focuses on designing displaced lunar orbits using low-thrust propulsion.