Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Crystal structure of a representative mixed adduct of trimethylaluminium and a lithium amide and a theoretical MO study on model systems

Armstrong, D.R. and Craig, F.J. and Kennedy, A.R. and Mulvey, R.E. (1996) Crystal structure of a representative mixed adduct of trimethylaluminium and a lithium amide and a theoretical MO study on model systems. Chemische berichte, 129. pp. 1293-1300. ISSN 0009-2940

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Reaction of the simple alane adduct [Me3Al · HN(CH2Ph)2] (2) with the lithium amide [(PhCH2)2NLi] leads to the formation of the mixed adduct [Me3Al · (PhCH2)2NLi · HN(CH2Ph)2] (1). The crystal structures of 1 and 2 are reported. Exhibiting a four-membered, mixed-metal, mixedanion ring-core, the structure of 1 is unusual in containing a monomeric lithium dibenzylamide fragment. Such fragments generally convert to aza-allyl derivatives, so its existence here can be attributed to the stabilising effect of the attached Me3Al ligand. Crystalline 2 adopts the classical, distorted-tetrahedral arrangement of simple monomeric alane adducts. Ab initio MO calculations on model systems show that mixed adduct formation from Me3Al and Me2NLi is exothermic, while further reaction to give Me2AlNMe2 and MeLi (i.e., complete transmetallation) is endothermic.