Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Methods for isolation, purification and structural elucidation of bioactive secondary metabolites from marine invertebrates

Ebada, Sherif S. and Edrada-Ebel, RuAngelie and Lin, Wenhan and Proksch, Peter (2008) Methods for isolation, purification and structural elucidation of bioactive secondary metabolites from marine invertebrates. Nature Protocols, 3. pp. 1820-1831. ISSN 1754-2189

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In the past few decades, marine natural products bioprospecting has yielded a considerable number of drug candidates. Two marine natural products have recently been admitted as new drugs: Prialt (also known as ziconotide) as a potent analgesic for severe chronic pain and Yondelis (known also as trabectedin or E-743) as antitumor agent for the treatment of advanced soft tissue sarcoma. In this protocol, methods for bioactivity-guided isolation, purification and identification of secondary metabolites from marine invertebrates such as sponges, tunicates, soft corals and crinoids are discussed. To achieve this goal, solvent extraction of usually freeze-dried sample of marine organisms is performed. Next, the extract obtained is fractionated by liquid-liquid partitioning followed by various chromatographic separation techniques including thin layer chromatography, vacuum liquid chromatography, column chromatography (CC) and preparative high-performance reversed-phase liquid chromatography. Isolation of bioactive secondary metabolites is usually monitored by bioactivity assays, e.g., antioxidant (2,2-diphenyl-1-picryl hydrazyl) and cytotoxicity (microculture tetrazolium) activities that ultimately yield the active principles. Special care should be taken when performing isolation procedures adapted to the physical and chemical characteristics of the compounds isolated, particularly their lipo- or hydrophilic characters. Examples of isolation of compounds of different polarities from extracts of various marine invertebrates will be presented in this protocol. Structure elucidation is achieved using recent spectroscopic techniques, especially 2D NMR and mass spectrometry analysis.