Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Protection against aflatoxin B1 in rat - a new look at the link between toxicity, carcinogenicity, and metabolism

Ellis, E. (2009) Protection against aflatoxin B1 in rat - a new look at the link between toxicity, carcinogenicity, and metabolism. Toxicological Sciences, 109 (1). pp. 1-3. ISSN 1096-6080

Full text not available in this repository. Request a copy from the Strathclyde author


The ability of aflatoxin B1 (AFB1) to cause liver cancer has a profound impact on the health of many people living in certain regions of the developing world. A clearer understanding of the metabolism of this toxin in model systems may ultimately lead to effective strategies for preventing its harmful effects. To this end, the work described by Roebuck et al. in this issue of Toxicological Sciences illustrates how transgenic animals have been used to determine not only which routes of metabolism prevail in vivo, but also whether these contribute to the prevention of toxicity and carcinogenicity. By overexpressing AKR7A1, an aldo-keto reductase known to be capable of metabolizing AFB1, they also show that in the rat, the link between metabolism, toxicity and carcinogenicity is not as clear-cut as previously thought. Although the AKR7A1 enzyme is shown to be involved in the metabolism of AFB1 in vivo.