Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Neuropsychiatric disease and toxoplasma gondii infection

Henriquez, S.A. and Brett, Ros and Alexander, J. and Pratt, Judith and Roberts, C.W. (2009) Neuropsychiatric disease and toxoplasma gondii infection. Neuroimmunomodulation, 16 (2). pp. 122-133. ISSN 1021-7401

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Toxoplasma gondii infects approximately 30% of the world's population, but causes overt clinical symptoms in only a small proportion of people. In recent years, the ability of the parasite to manipulate the behaviour of infected mice and rats and alter personality attributes of humans has been reported. Furthermore, a number of studies have now suggested T. gondii infection as a risk factor for the development of schizophrenia and depression in humans. As T. gondii forms cysts that are located in various anatomical sites including the brain during a chronic infection, it is well placed anatomically to mediate these effects directly. The T. gondii genome is known to contain 2 aromatic amino acid hydroxylases that potentially could directly affect dopamine and/or serotonin biosynthesis. However, stimulation of the immune response has also recently been associated with mood and behavioural alterations in humans, and compounds designed to alter mood, such as fluoxetine, have been demonstrated to alter aspects of immune function. Herein, the evidence for T.-gondii-induced behavioural changes relevant to schizophrenia and depression is reviewed. Potential mechanisms responsible for these changes in behaviour including the role of tryptophan metabolism and the hypothalamic-pituitary-adrenal axis are discussed.