Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Improved SIFT-based image registration using belief propagation

Cheng, S. and Stankovic, Vladimir M. and Stankovic, L. (2009) Improved SIFT-based image registration using belief propagation. In: IEEE International Conference on Acoustics, Speech and Signal Processing, 2009. IEEE, pp. 2909-2912. ISBN 978-1-4244-2353-8

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Scale Invariant Feature Transform (SIFT) is a very powerful technique for image registration. While SIFT descriptors accurately extract invariant image characteristics around keypoints, the commonly used matching approach for registration is overly simplified, because it completely ignores the geometric information among descriptors. In this paper, we formulate keypoint matching as a global optimization problem and provide a suboptimum solution using belief propagation. Experimental results show significant improvement over previous approaches.