Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Compressive video sampling

Stankovic, V. and Stankovic, L. and Cheng, S. (2009) Compressive video sampling. In: Proceedings of the 16th IEEE international conference on Image processing. IEEE, pp. 3001-3004. ISBN 978-1-4244-5653-6

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Compressive sampling is a novel framework that exploits sparsity of a signal in a transform domain to perform sampling below the Nyquist rate. In this paper, we apply compressive sampling to reduce the sampling rate of images/video. The key idea is to exploit the intra- and inter-frame correlation to improve signal recovery algorithms. The image is split into non-overlapping blocks of fixed size, which are independently compressively sampled exploiting sparsity of natural scenes in the Discrete Cosine Transform (DCT) domain. At the decoder, each block is recovered using useful information extracted from the recovery of a neighboring block. In the case of video, a previous frame is used to help recovery of consecutive frames. The iterative algorithm for signal recovery with side information that extends the standard orthogonal matching pursuit (OMP) algorithm is employed. Simulation results are given for Magnetic Resonance Imaging (MRI) and video sequences to illustrate advantages of the proposed solution compared to the case when side information is not used.