Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Structural consequences of the use of hard and soft tripodal ligands during metathesis reactions: Synthesis of the [bis(hydrotris(methimazolyl)borato]bismuth(III) [bis(hydrotris(pyrazolyl)borato]sodiate

Reglinski, J. and Spicer, M.D. and Garner, M. and Kennedy, A.R. (1999) Structural consequences of the use of hard and soft tripodal ligands during metathesis reactions: Synthesis of the [bis(hydrotris(methimazolyl)borato]bismuth(III) [bis(hydrotris(pyrazolyl)borato]sodiate. Journal of the American Chemical Society, 121 (10). pp. 2317-2318. ISSN 0002-7863

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Tripodal ligands such as the hydrotris(pyrazolyl)borate anion (Tp) have found great favor in studies of structure and reactivity1 relevant to catalysis2 and inorganic biochemistry.3 Considering the accepted synthetic utility of Tp-based ligand systems, it is surprising that the range of analogous soft tripodal ligands is so limited.4 By replacing pyrazole with methimazole (2-mercapto-1-methylimidazole) in the synthetic method of Trofimenko5 (Scheme 1) we were recently successful6 in the direct synthesis of the simple tridentate, sulfur-based ligand, hydrotris(methimazolyl)borate (Tm).