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Abstract

Compressive sampling is a novel framework that exploits
sparsity of a signal in a transform domain to perform sam-
pling below the Nyquist rate. In this paper, we apply com-
pressive sampling to reduce the sampling rate of binary im-
ages. A system is proposed whereby the image is split into
non-overlapping blocks of equal size and compressive sam-
pling is performed on selected blocks only using the orthog-
onal matching pursuit technique. The remaining blocks are
sampled fully. This way, the complexity and the required
sampling time is reduced since the orthogonal matching
pursuit operates on a smaller number of samples, and at
the same time local sparsity within an image is exploited.
Our simulation results show more than 20% saving in ac-
quisition for several binary images.

1. Introduction

Compressive sampling is gaining much attention re-
cently. Simply put, it is a statistical technique for data ac-
quisition and estimation that aims to sample signals sparsely
in transform domains. The sparse samples may be used
to estimate the original signal under certain conditions.
This makes compressive sampling very attractive for dig-
ital image and video applications, where the Nyquist rate
is so high that compressing the sheer volume of samples
is a problem for transmission or storage. The process
of compressive sampling replaces conventional sampling
and reconstruction with a more general linear measurement
scheme with an optimization procedure to acquire a subset
of signals within a source at a rate that is significantly below
Nyquist.

A number of theoretical contributions have appeared on
compressive sampling (see [1, 2, 3]) over the past few years.
Yet, only few papers address day-to-day practical situations,
for example, analog-to-information converter [4] and one-
pixel camera [5]. In this paper, we consider simple applica-

tions which would benefit tremendously from compressive
sampling in order to simplify the sampling process and pos-
sibly the compression process.

Typical applications would range from acquisition of im-
age/video from an array of cameras monitoring a large area.
Solutions would range from extraction of relevant data to
excellent compression schemes. Alternatively, we propose
simply acquiring enough samples (well below Nyquist) to
enable reconstruction with good perceptual quality. The
challenge is to predict which scenes are sparse in the trans-
form domain. Generally, binary images or video tend to
possess many (generally greater than 50%) zero coefficients
(in transform or pixel domain) in static backgrounds or very
slow motion. An example would be monitoring the flight
pattern of birds in a section of sky - besides the centre block
of the image or video, everything else would be sparse.
Similarly another application scenario gaining much atten-
tion recently is automated pedestrian sensing and tracking
for security, urban planning, and the retail industry. A com-
mon approach is to use CCTV and visible image processing,
but this involves complicated scene interpretation. Infrared
cameras are relatively low-cost and with lower resolution
but it is possible to perform tracking of pedestrians, and col-
lect biometric data, such as gait measurement [6]. However,
sampling and reconstruction of the footage is an expensive
task. Thus, we exploit the fact that the scene around the
pedestrian will be mostly static and hence lend itself to com-
pressive sampling.

However, this is not a simple task because only frac-
tions of the source will be sparse. We introduce a simple
method whereby the source, say an image, is partitioned
into equally sized blocks. Sparse blocks would be sam-
pled compressively, and the remaining blocks which contain
the important information sampled fully. The size of the
blocks will depend on the location of ‘sparse’ areas within
the source. We show that is possible to significantly re-
duce the total number of samples using compressive sam-
pling. Reconstruction of the sparsely sampled blocks is
achieved from the orthogonal matching pursuit algorithm



[7], which is suboptimal but practical due to its relatively
lower complexity than other proposed reconstruction meth-
ods [2, 1, 8, 9].

This paper is proposed as follows: Section II provides
an overview of compressive sampling, Section III describes
our proposed system from acquisition to reconstruction, re-
sults using binary images are presented in Section IV, and
we conclude in Section V.

2 Compressive Sampling

Compressive sampling or compressed sensing [1, 2] is a
novel framework that enables sampling below Nyquist rate,
without (or with minimum) sacrificing reconstruction qual-
ity by exploiting sparsity of the signal in some domain. In
this section we briefly review compressed sampling follow-
ing closely notation of [3].

Let x = {x[1], . . . , x[N ]} be a set of N samples of a
real-valued, time-discrete random process X . Let s be rep-
resentation of x in the Ψ domain, that is:

x = Ψs =
N∑

i=1

siψi, (1)

where s = {s1, . . . , sN} is an N -vector of weighted coef-
ficients si =< x, ψi >, and Ψ = [ψ1|ψ2| · · · |ψN ] is an
N × N basic matrix with ψi being the i-th basic column
vector.

We say that vector x is K-sparse in the domain Ψ,
K << N , if only K out of N coefficients of s are non-
zero. Sparsity of a signal is used for compression in con-
ventional transform coding, where the whole signal is first
acquired (all N samples of x), then the N transform coef-
ficients s are obtained via s = ΨT x, and then N − K (or
more in the case of lossy compression) coefficients of s are
discarded and the remaining are encoded. The most appeal-
ing example is Discrete Cosine Transform (DCT) in image
coding.

Note that huge redundancy is present in the acquisition
since large amount of data are discarded (and hence not used
at all), because they carry negligible energy. The main idea
of compressive sampling is to remove this “sampling redun-
dancy” by requiring only M samples of the signal, where
K < M << N . Let y be a M -length measurement vector
given by:

y = Φx, (2)

where Φ is an M × N measurement matrix. The above
expression can be written in terms of s as:

y = ΦΨs. (3)

It has been shown in [2, 1] that signal x can be recovered
losslessly from M ≈ K or slightly more measurements

(vector y in (3)) if the measurement matrix Φ is properly
designed, so that ΦΨ satisfies the so-called restricted isom-
etry property [2]. This will always be true if Φ and Ψ are
incoherent, that is the vectors of Φ cannot sparsely repre-
sented basic vectors and vice versa.

It was further shown in [1, 2, 3] that a Gaussian matrix
Φ satisfies the above property for any (orthonormal) Ψ with
high probability if M ≥ cK log(N/K) for some small con-
stant c. Thus, one can recover N measurements of x with
high probability from only M ≈ cK log(N/K) << N
random Gaussian measurements y under the assumption
that x is K-sparse in some domain Ψ. Note that it is not
known in advance which si coefficients are zeros, or which
x[i] samples are not needed.

Unfortunately, reconstruction of x = {x[1], . . . , x[N ]}
(or equivalently, s = {s1, . . . , sN}) from vector y of M
samples is not trivial. The exact solution [1, 2, 3] is NP-hard
and consists of finding the minimum l0 norm (the number
of non-zero elements). However, excellent approximation
can be obtained via the l1 norm minimization given by:

ŝ = arg min ||s′||1, such that ΦΨs′ = y. (4)

This convex optimization problem, namely, basis pursuit
[1, 2], can be solved using a linear program algorithm of
O(N3) complexity. In contrast to l0 norm minimization,
the l1 norm minimization usually requires more than K + 1
measurements. Due to complexity and low speed of linear
programming algorithms, faster solutions were proposed at
the expense of slightly more measurements, such as match-
ing pursuit, tree matching pursuit [8], orthogonal matching
pursuit [7] (used in this paper), and group testing [9].

3. Compressive Sampling of Binary Images

In this section, we describe our system, shown in Figure
1, for compressive sampling of binary images. The system
performs compressive sampling on the image blocks using
orthogonal matching pursuit (OMP) [7]. We use i.i.d. Gaus-
sian measurement matrix Φ and unit transform Ψ (hence,
we exploit sparsity of the image in the pixel domain).

The OMP algorithm is an efficient solution for signal re-
covery that is easy to implement. It is of O(MNK) com-
plexity, and requires M ≈ 2m log N measurements in 99%
of time. The algorithm has K iterations, and in each itera-
tion it calculates N inner products between M -length vec-
tors and finds the maximum. Thus, when M is large the
algorithm is slow and impractical for online applications.

To reduce the complexity we split the image into B non-
overlapping blocks of equal size. Then, B1 ≤ B blocks
are picked for compressive sampling. The remaining blocks
are sampled in the conventional way (that is, all pixels are
collected).



Binary source

Divide source 
into B blocks of 
size m x n & 
apply Transform 
to each block

Perform compressive 
sampling on B1 blocks, 
B1 = B

Lossless 
compression 
on all B blocks

Decompression
Inverse transform 
on B blocks

Orthogonal 
matching pursuit 
on B1 blocks

Reconstructed 
Source

Figure 1. Block diagram of the proposed sys-
tem.

The OMP algorithm is now used for each of B1 selected
blocks independently after transform. Using this method,
besides reducing the required time, we also exploit local
sparsity within image in a more efficient manner. That is,
the parts of the image that are non-sparse are not sampled in
the compressed way, and the OMP algorithm is used only
for the regions that are estimated to be sparse. For exam-
ple, the background is a good candidate for compressive
sampling whereas areas with many details are not. After
(compressive) sampling conventional lossless compression
can be applied.

The main problem that arises is the selection of the
blocks to be compressively sampled. In wireless sensor
applications (and in video acquisition), where a sensor ac-
quires images in real time, the selection can be based on
previous images.

Note that any transform can be applied under the condi-
tion that the signal is sparse in the transform domain.

4. Results

In this section we report our experimental results. We
use the system described in the previous section with three
binary images of different sizes.

In the first experiment we use a small size image (16× 8
pixels) shown in Figure 2 (top left). The image is not split
into blocks, that is, compressive sampling was applied to the
whole image. The image stream contains N−K=107 zeros
(and K=21 ones), hence it is sparse in the pixel domain. We
sampled the image in the pixel domain using the Gaussian
measurement matrix. The results obtained for three differ-
ent measurements M are shown in Figure 2. It can be seen
from the figure that M = 100 < N = 128 measurements
are sufficient to perfectly recover the image, which yields
to roughly 21% savings in acquisition. When 80 and 90
measurements were used for reconstruction, the orthogonal
matching pursuit was not able to correctly recover the whole
image. As expected with the OMP, M ≈ 2K log N ≈ 93

(see Section III), the number of measurements needed is
much higher than the theoretical value of K + 1 = 22 with
l0 norm minimization.

original image 90 Samples

80 Samples 100 Samples

Figure 2. Results with the “L” image of 16
× 8 pixels: original image (top left) and re-
constructions with 80 measurements (bot-
tom left), 90 measurements (top right), and
100 measurements (bottom right).

In the next experiment, we use the “Lancaster Logo” im-
age of 128 × 64 pixels (hence, the total number of bits is
N=8,192). The total number of zeros is 6,311. We split
the image into B = 32 blocks each of size 16 × 16 pix-
els and show in Figure 3 the distribution of the number of
zeros over all B blocks. It can be seen that the image con-
tains many blocks that are not sparse enough (with number
of zeros beyond 20%), for which compressive sampling is
not effective. Thus, we perform compressive sampling on
B1 < B blocks only. Remaining B − B1 blocks are sam-
pled fully (using 256 = 16 × 16 measurements with unity
measurement matrix). The next figure shows our obtained
results as residual bit error rate (BER) after reconstruction
as a function of B − B1, that is, the number of blocks on
which compressive sampling was not applied. The number
of measurements M (for each of B1 compressive sampled
block) is 200, 220, and 240 < N = 16 × 16 = 256. The
first conclusion from the figure is that error-free recovery is
possible with B1 = 10 compressive sampled blocks. The
second conclusion is that M = 200 measurements are suf-
ficient.

In the last experiment we use the “Neighbor-
hood watch bw” image of size 140 × 200 pixels shown
in Figure 6 (top left). We split the image into B = 280
10 × 10 blocks. Again, we used compressive sampling
for B1 < B blocks. The results are presented in Figure 5
as BER vs. B − B1 for the number of measurements M
equal to 60, 80, and 90. It can be seen from the figure that
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Figure 3. Distributions of the number of zeros
over B=32 blocks for the “Lancaster image”
of size 128 × 64 pixels.

roughly 30 blocks were efficiently sampled compressively
for the number of measurements M = 60.

Figure 6 shows the three reconstructed images for the
number of measurements M equal to 20, 50, and 80. Only
blocks with at least 70% of zeros were compressive sampled
(B1 = 118 in total). The improvement in the reconstruction
quality as the number measurements M increases can be
observed.

5 Conclusions and Future Work

We have applied the novel concept of compressive sam-
pling on a practical problem of sampling binary images.
Due to the complexity of compressive sampling algorithms
and varying sparsity within an image, we split the image
into non-overlapping blocks, and only perform compressive
sampling on some of the blocks, while the remaining blocks
were sampled fully. Experimental results show great poten-
tial for compressive sampling for binary image acquisition.
In future work, we will extend our system for gray-scale
images and compressive sampling in other domains.
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Figure 5. BER vs. the number of blocks
for which compressive sampling was not ap-
plied for the “Neighborhood watch bw” im-
age. Three different number of measure-
ments are compared.
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Figure 6. Results with the “Neighbor-
hood watch bw” image of 140 × 200 pixels:
original image (top left) and reconstructions
with 20 measurements (bottom left), 50 mea-
surements (top right), and 80 measurements
(bottom right).


