Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Fast algorithm for distortion-based error protection of embedded image codes

Hamzaoui, R. and Stankovic, Vladimir M. and Xiong, Z. (2005) Fast algorithm for distortion-based error protection of embedded image codes. IEEE Transactions on Image Processing, 14 (10). pp. 1417-1421. ISSN 1057-7149

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We consider a joint source-channel coding system that protects an embedded bitstream using a finite family of channel codes with error detection and error correction capability. The performance of this system may be measured by the expected distortion or by the expected number of correctly decoded source bits. Whereas a rate-based optimal solution can be found in linear time, the computation of a distortion-based optimal solution is prohibitive. Under the assumption of the convexity of the operational distortion-rate function of the source coder, we give a lower bound on the expected distortion of a distortion-based optimal solution that depends only on a rate-based optimal solution. Then, we propose a local search (LS) algorithm that starts from a rate-based optimal solution and converges in linear time to a local minimum of the expected distortion. Experimental results for a binary symmetric channel show that our LS algorithm is near optimal, whereas its complexity is much lower than that of the previous best solution.