Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Bandwidth efficient multi-station wireless streaming based on complete complementary sequences

Khirallah, C. and Stankovic, V. and Stankovic, L. and Yang, Y. and Xiong, Z. (2009) Bandwidth efficient multi-station wireless streaming based on complete complementary sequences. IEEE Transactions on Wireless Communications, 8 (2). pp. 552-556. ISSN 1536-1276

[img]
Preview
PDF (Bandwidth_Efficient_Multi-Station.pdf)
Bandwidth_Efficient_Multi-Station.pdf

Download (398kB) | Preview

Abstract

Data streaming from multiple base stations to a client is recognized as a robust technique for multimedia streaming. However the resulting transmission in parallel over wireless channels poses serious challenges, especially multiple access interference, multipath fading, noise effects and synchronization. Spread spectrum techniques seem the obvious choice to mitigate these effects, but at the cost of increased bandwidth requirements. This paper proposes a solution that exploits complete complementary spectrum spreading and data compression techniques jointly to resolve the communication challenges whilst ensuring efficient use of spectrum and acceptable bit error rate. Our proposed spreading scheme reduces the required transmission bandwidth by exploiting correlation among information present at multiple base stations. Results obtained show 1.75 Mchip/sec (or 25%) reduction in transmission rate, with only up to 6 dB loss in frequency-selective channel compared to a straightforward solution based solely on complete complementary spectrum spreading.