Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Robust experimental design and feature selection in signal transduction pathway modeling

He, F. and Brown, M. and Yue, H. and Yeung, L.F. (2008) Robust experimental design and feature selection in signal transduction pathway modeling. In: IEEE International Joint Conference on Neural Networks, 2008. IJCNN 2008. IEEE, Hong Kong, China, pp. 1544-1551. ISBN 978-1-4244-1820-6

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Due to the general lack of experimental data for biochemical pathway model identification, cell-level time series experimental design is particularly important in current systems biology research. This paper investigates the problem of experimental design for signal transduction pathway modeling, and in particular, focuses on methods for parametric feature selection. An important problem is the estimation of parametric uncertainty which is a function of the true (but unknown) parameters. In this paper, two ldquorobustrdquo feature selection strategies are investigated The first is a mini-max robust experimental design approach, the second is a sampled experimental design method inspired by the Morris global sensitivity analysis. The two approaches are analyzed and interpreted in terms of a generalized optimal experimental design criterion, and their performance has been compared via simulation on the IkappaB-NF-kappaB pathway feature selection problem.