Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Robust experimental design and feature selection in signal transduction pathway modeling

He, F. and Brown, M. and Yue, H. and Yeung, L.F. (2008) Robust experimental design and feature selection in signal transduction pathway modeling. In: IEEE International Joint Conference on Neural Networks, 2008. IJCNN 2008. IEEE, Hong Kong, China, pp. 1544-1551. ISBN 978-1-4244-1820-6

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Due to the general lack of experimental data for biochemical pathway model identification, cell-level time series experimental design is particularly important in current systems biology research. This paper investigates the problem of experimental design for signal transduction pathway modeling, and in particular, focuses on methods for parametric feature selection. An important problem is the estimation of parametric uncertainty which is a function of the true (but unknown) parameters. In this paper, two ldquorobustrdquo feature selection strategies are investigated The first is a mini-max robust experimental design approach, the second is a sampled experimental design method inspired by the Morris global sensitivity analysis. The two approaches are analyzed and interpreted in terms of a generalized optimal experimental design criterion, and their performance has been compared via simulation on the IkappaB-NF-kappaB pathway feature selection problem.