Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Electronic properties of very thin native SiO2/a-Si:H interfaces and their comparison with those prepared by both dielectric barrier discharge oxidation at atmospheric pressure and by chemical oxidation

Kral, M. and Bucek, A. and Gleskova, H. and Cernak, M. and Kobayashi, H. and Rusnak, J. and Zahoran, M. and Brunner, R. and Pincik, E. (2005) Electronic properties of very thin native SiO2/a-Si:H interfaces and their comparison with those prepared by both dielectric barrier discharge oxidation at atmospheric pressure and by chemical oxidation. Acta Physica Slovaca, 55 (4). pp. 373-378. ISSN 0323-0465

[img]
Preview
PDF - Published Version
Download (503Kb) | Preview

    Abstract

    The contribution deals with electronic properties of thin oxide/amorphous hydrogenated silicon (a-Si:H) measured by capacitance-voltage (C-V) and charge version of deep level transient spectroscopy (Q-DLTS). The interest was focused on the studies of the interface properties of very thin dielectrics formed by dielectric barrier discharge (DBD) or natively on the a-Si:H layer. These properties were compared with those of oxide layers prepared by chemical oxidation in HNO3. The DBD was used for the preparation of a very thin SiO2 layer on a-Si:H for the first time to our knowledge. Preliminary electrical measurements confirmed that a very low interface states density was detected in the case of the native oxide/a-Si:H and DBD oxide/a-Si:H.

    Item type: Article
    ID code: 12702
    Keywords: oxide , dielectric barrier discharge , Electrical engineering. Electronics Nuclear engineering, Physics and Astronomy(all)
    Subjects: Technology > Electrical engineering. Electronics Nuclear engineering
    Department: Faculty of Engineering > Electronic and Electrical Engineering
    Related URLs:
      Depositing user: Strathprints Administrator
      Date Deposited: 14 Dec 2011 13:55
      Last modified: 05 Sep 2014 13:05
      URI: http://strathprints.strath.ac.uk/id/eprint/12702

      Actions (login required)

      View Item

      Fulltext Downloads: