Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Supramolecular motifs in s-block metal bound sulfonated monoazo dyes

Kennedy, Alan R. and Hughes, Mhairi P. and Monaghan, Maureen L. and Staunton, Edward and Teat, Simon J. and Smith, W. Ewen (2001) Supramolecular motifs in s-block metal bound sulfonated monoazo dyes. Journal of the Chemical Society, Dalton Transactions, 2001 (14). pp. 2199-2205. ISSN 0300-9246

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The solid-state structures of 43 Li, Na, K, Rb, Mg, Ca and Ba salts of para- and meta-sulfonated azo dyes have been examined and can be categorised into three structural classes. All form alternating organic and inorganic layers, however, the nature of the coordination network that forms these layers differs from class to class. The class of structure formed was found to be primarily governed by metal type, but can also be influenced by the nature and position of the organic substituents. Thus, for the para-sulfonated azo dyes, Mg compounds form solvent-separated ion-pair solids; Ca, Ba and Li compounds form simple coordination networks based on metal-sulfonate bonding; and Na, K and Rb compounds form more complex, higher dimensional coordination networks. Compounds of meta-sulfonated azo dyes follow a similar pattern, but here, Ca species may also form solvent-separated ion-pair solids. Significantly, this first attempt to classify such dyestuffs using the principles of supramolecular chemistry succeeds not only for the simple dyes used here as model compounds, but also for more complex molecules, similar to modern colourants.