Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Demonstration of a transparent router for wavelength-hopping time-spreading optical CDMA

Brès, Camille Sophie and Glesk, Ivan and Prucnal, Paul R. (2005) Demonstration of a transparent router for wavelength-hopping time-spreading optical CDMA. Optics Communications, 254 (1-3). pp. 58-66. ISSN 0030-4018

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We propose and demonstrate a two-dimensional wavelength-hopping time-spreading optical code division multiple access (OCDMA) node architecture for all-optical path networks. An OCDMA-based network can provide optically transparent and reconfigurable paths for on-demand high-bandwidth optical connections. The network node consists of parallel code converter routers (PCCRs), which perform routing by passive code conversion, the destination address of the data sent being an OCDMA code. We present an experimental demonstration of this OCDMA node in a 4-station mesh network operating at 253 Gchips/s with a single user bit rate of 2.5 Gb/s. We show the capability of the node to create reconfigurable code paths (CPs) and virtual code paths (VCPs). Our proposed architecture provides an all-optical method to create reconfigurable paths, while reducing switching delays and node complexity. Due to the inherent flexibility of OCDMA, path networks can rapidly respond to failure or changes in load condition while accommodating a large number of users