Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Grid integration of large DFIG-based wind farms using VSC transmission

Xu, L. and Yao, L. and Sasse, C. (2007) Grid integration of large DFIG-based wind farms using VSC transmission. IEEE Transactions on Power Systems, 22 (3). pp. 976-984. ISSN 0885-8950

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper describes the use of voltage source converter (VSC)-based HVDC transmission system (VSC transmission) technology for connecting large doubly fed induction generator (DFIG)-based wind farms over long distance. The operation principles of the proposed system are described, and new control strategies for normal and grid fault conditions are proposed. To obtain smooth operation, the wind farm side VSC (WFVSC) is controlled as an infinite voltage source that automatically absorbs power generated by the wind farm and maintains a stable local ac network. Fault ride through of the system during grid ac faults is achieved by ensuring automatic power balancing through frequency modulation using WFVSC and frequency control using DFIG. PSCAD/EMTDC simulations are presented to demonstrate robust performance during wind speed and power variations and to validate the fault ride through capability of the proposed system.