Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Design, simulation and characterization of a MEMS optical scanner

Li, L. and Begbie, M. and Brown, J.G. and Uttamchandani, D.G. (2007) Design, simulation and characterization of a MEMS optical scanner. Journal of Micromechanics and Microengineering, 17 (9). pp. 1781-1787. ISSN 0960-1317

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper reports on the design, simulation and opto-electro-mechanical characterization of a microelectromechanical system (MEMS) scanner actuated by an out-of-plane (vertical) electrothermal actuator that was fabricated using a single layer silicon-on-insulator (SOI) foundry process. The overall size of the scanner, including the micromirror and the actuator, is 2 mm × 1 mm. A maximum static mechanical tilting angle of 5° is achieved at a dc driving voltage of 18 V and current of 23 mA, corresponding to a 10° optical scan angle. The scanner can be operated from dc to low frequencies (the 3 dB bandwidth is from 0 Hz to 80 Hz), which meets the requirement for certain practical opto-electronic systems such as optical coherence tomography (OCT) systems. The scanner has a maximum mechanical tilting angle of 8° at its resonant frequency of 2.19 kHz, corresponding to a total of 16° maximum optical scan angle. Simulations of static and dynamic performances of the scanner have been conducted using finite element method (FEM) software, resulting in outcomes similar to the experimental findings. A thermal response time of 60 ms is calculated numerically using heat flow theory, while a thermal response time of 55.6 ms was experimentally obtained by analysing the intensity distribution of the scanned patterns generated when using a square driving waveform to drive the scanner.