Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Impact of marine power system architectures on IFEP vessel availability and survivability

Schuddebeurs, J. and Booth, C.D. and Burt, G.M. and McDonald, J.R. (2007) Impact of marine power system architectures on IFEP vessel availability and survivability. In: IEEE International Symposium on Electric Ship Technologies, 2007-05-21 - 2007-05-23.

[img]
Preview
PDF
330713.pdf

Download (565kB) | Preview

Abstract

In recent years integrated full electric propulsion (IFEP) has become a popular power system concept within the marine community, both for the naval and the commercial community. In this paper the authors discuss the need for a detailed investigation into the impact of different IFEP power system architectures on the availability of power and hence on the survivability of the vessel. The power system architectures considered here could relate to either a commercial or a naval vessel and include radial, ring and hybrid AC/DC arrangements. Comparative fault studies of the architectures were carried out in an attempt to make valuable observations on the survivability of a vessel. Simulation results demonstrate that the ring and hybrid AC/DC architectural contribute to a higher survivability than the radial architecture. However, there are still challenges that need to be addressed and therefore potential solutions such as fault current limiters will be considered.