Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Provision of synchronising power characteristics on DFIG-based wind farms

Anaya-Lara, O. and Hughes, F. and Jenkins, N. and Strbac, G. (2007) Provision of synchronising power characteristics on DFIG-based wind farms. IEE Proceedings Generation Transmission and Distribution, 1. pp. 162-169. ISSN 1350-2360

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The significant increase in wind penetration expected in the near future imposes the requirement that the bulk addition of wind farms to the network should not be detrimental to the overall network-operating characteristics. One way of ensuring this is to aim to provide a wind farm with a dynamic characteristic that is similar to that of a conventional synchronous-generator-based power station. A control strategy is presented that provides a DFIG-based wind farm with a power-response characteristic to network disturbances that dynamically resembles that of a synchronous generator. The DFIG controller is aimed at minimising the effect on network operation that the replacement of a conventional generator by a DFIG-based wind farm will have. A simple but realistic test network that combines synchronous and wind-farm generation has been modelled and used to assess dynamic performance. Simulation results are presented and discussed that demonstrate the capabilities of the new DFIG controller, although these are gained at the expense of losing some of the damping provided by conventional DFIG operation.