Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Structural damage identification using multifunctional bragg grating sensors part I : theory and implementation

Betz, D. and Thursby, G.J. and Culshaw, B. and Staszewski, W. (2006) Structural damage identification using multifunctional bragg grating sensors part I : theory and implementation. Smart Materials and Structures, 15 (5). pp. 1305-1312. ISSN 0964-1726

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Structural health monitoring has become a respected and established discipline in engineering. Health monitoring involves the development of autonomous systems for continuous monitoring, inspection and damage detection of structures with minimum involvement of labour. The ultimate goal of structural health monitoring is to increase reliability, improve safety, enable light-weight design and reduce maintenance costs for all kinds of structures. The identification of structural damage is therefore a key issue in structural health monitoring. The scope of this paper is to present the results of testing a system for the identification of structural damage based on fibre Bragg grating sensors. The basic idea is to use fibre Bragg gratings as acoustic receivers of ultrasonic Lamb waves. The layout of such a damage identification system is introduced and its theoretical limits are studied numerically and experimentally. The set-up for damage identification experiments is described and the results of initial experiments introducing damage detection based on the analysis of Lamb wave signals are presented. The results for the Bragg grating sensors are then compared to the results of established technology for Lamb wave detection using piezoceramic transducers.