Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Uncertainty propagation through radial basis function networks part I: regression networks

Chetwynd, D. and Worden, K. and Manson, G. and Pierce, S.G. (2005) Uncertainty propagation through radial basis function networks part I: regression networks. In: Eurodyn 2005: 6th International Conference on Structural Dynamics, 2005-09-04 - 2005-09-07.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Radial Basis Function (RBF) networks are examples of a versatile artificial neural network paradigm which lend themselves equally well to problems of classification and regression. Training the networks can be accomplished by a number of textbook techniques. The objective of the current paper is to explore how uncertainty propagates through such networks. In this, the first of two papers, the regression problem is addressed. The RBF networks are trained with crisp data, but interval output weights, in such a way that a regression model predicts an interval rather than a crisp value. This technique, as developed for the more common Multi-Layer Perceptron (MLP) network allows the user to investigate Ben-Haim’s concept of opportunity.