Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Data mining reactor fuel grab load trace data to support nuclear core condition monitoring

West, G.M. and Jahn, G.J. and McArthur, S.D.J. and McDonald, J.R. and Reed, J. (2006) Data mining reactor fuel grab load trace data to support nuclear core condition monitoring. IEEE Transactions on Nuclear Science, 53 (3). pp. 1494-1503. ISSN 0018-9499

[img]
Preview
PDF (Data mining reactor fuel grab data paper)
West_Data_Mining_Reactor.pdf - Accepted Author Manuscript

Download (348kB) | Preview

Abstract

A critical component of an advanced-gas cooled reactor (AGR) station is the graphite core. As a station ages, the graphite bricks that comprise the core can distort and may eventually crack. As the core cannot be replaced the core integrity ultimately determines the station life. Monitoring these distortions is usually restricted to the routine outages, which occur every few years, as this is the only time that the reactor core can be accessed by external sensing equipment. However, during weekly refueling activities measurements are taken from the core for protection and control purposes. It is shown in this paper that these measurements may be interpreted for condition monitoring purposes, thus potentially providing information relating to core condition on a more frequent basis. This paper describes the data-mining approach adopted to analyze this data and also describes a software system designed and implemented to support this process. The use of this software to develop a model of expected behavior based on historical data, which may highlight events containing unusual features possibly indicative of brick cracking, is also described. Finally, the implementation of this newly acquired understanding in an automated analysis system is described.