Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Data mining reactor fuel grab load trace data to support nuclear core condition monitoring

West, G.M. and Jahn, G.J. and McArthur, S.D.J. and McDonald, J.R. and Reed, J. (2006) Data mining reactor fuel grab load trace data to support nuclear core condition monitoring. IEEE Transactions on Nuclear Science, 53 (3). pp. 1494-1503. ISSN 0018-9499

[img]
Preview
PDF (Data mining reactor fuel grab data paper)
West_Data_Mining_Reactor.pdf - Accepted Author Manuscript

Download (348kB) | Preview

Abstract

A critical component of an advanced-gas cooled reactor (AGR) station is the graphite core. As a station ages, the graphite bricks that comprise the core can distort and may eventually crack. As the core cannot be replaced the core integrity ultimately determines the station life. Monitoring these distortions is usually restricted to the routine outages, which occur every few years, as this is the only time that the reactor core can be accessed by external sensing equipment. However, during weekly refueling activities measurements are taken from the core for protection and control purposes. It is shown in this paper that these measurements may be interpreted for condition monitoring purposes, thus potentially providing information relating to core condition on a more frequent basis. This paper describes the data-mining approach adopted to analyze this data and also describes a software system designed and implemented to support this process. The use of this software to develop a model of expected behavior based on historical data, which may highlight events containing unusual features possibly indicative of brick cracking, is also described. Finally, the implementation of this newly acquired understanding in an automated analysis system is described.