Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Tetraaryl biphenyl diamine hole transport materials: a structural study utilizing both single crystal and high resolution powder diffraction

Kennedy, A.R. and Smith, W.E. and Tackley, D.R. and David, W.I.F. and Shankland, K. and Brown, B. and Teat, S.J. (2001) Tetraaryl biphenyl diamine hole transport materials: a structural study utilizing both single crystal and high resolution powder diffraction. Journal of Materials Chemistry, 12. pp. 168-172. ISSN 0959-9428

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The use of synchrotron based instruments has allowed the crystal structures of the triarylamine based hole transport materials N,N-diphenyl-N,N-bis(3-methylphenyl)-1,1-biphenyl-4,4-diamine (TPD) and N,N-diphenyl-N,N-bis(4-methylphenyl)-1,1-biphenyl-4,4-diamine (TPD-4) to be determined for the first time. The structure of TPD, based on a single crystal experiment using a microcrystal, has profound implications for work on elucidating the hole transport mechanism of these materials as it is shown to contain two disordered but distinct molecular conformations. Neither conformation corresponds to previous predictions from density functional theory. Further complicating the system is the presence of a second polymorph detected in bulk TPD. The crystal structure of TPD-4, derived from high resolution powder diffraction techniques, is also presented and is discussed with reference to that of TPD.