Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Evolutionary hybrid approaches for a power system scheduling problem

Dahal, K. and Aldridge, C. and Galloway, S.J. (2007) Evolutionary hybrid approaches for a power system scheduling problem. European Journal of Operational Research, 177 (3). pp. 2050-2068. ISSN 0377-2217

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Generation scheduling (GS) in power systems is a tough optimisation problem which continues to present a challenge for efficient solution techniques. The solution is to define on/off decisions and generation levels for each electricity generator of a power system for each scheduling interval. The solution procedure requires simultaneous consideration of binary decision and continuous variables. In recent years researchers have focused much attention on developing new hybrid approaches using evolutionary and traditional exact methods for this type of mixed-integer problems. This paper investigates how the optimum or near optimum solution for the GS problem may be quickly identified. A design is proposed which uses a variety of metaheuristic, heuristics and mathematical programming techniques within a hybrid framework. The results obtained for two case studies are promising and show that the hybrid approach offers an effective alternative for solving the GS problems within a realistic timeframe.