Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

A wireless sensor network of permanently installed structural integrity monitors

Benny, C.G. and Steel, K. and McNab, A. and Hayward, G. (2005) A wireless sensor network of permanently installed structural integrity monitors. In: AIP Conference Proceedings, 2005-04-09 - 2005-04-09.

Full text not available in this repository. (Request a copy from the Strathclyde author)


Structural integrity monitoring (SIM) involving a large numbers of distributed sensors is of increasing importance to a wide range of industries. Compact sensor packages combining ultrasonic transducers with local sensor and communications control functions and signal processing have been designed using modern miniaturization techniques. Autonomous wireless devices powered by on-board batteries can extract top-up energy derived from the sensor environment. Applications to date include erosion or corrosion monitors via ultrasonic thickness measurement devices, area mapping array sensors and time-of-flight diffraction (TOFD) technique transducers for defect monitoring. Formation or propagation of defects can also be monitored with passive acoustic emission (AE) sensors.The project concepts and early prototyping were presented at QNDE 2003. This paper highlights further progress towards a distributed wireless ultrasonic sensor network and presents results of TOFD and thickness measurement tests. Signal processing techniques including averaging, finite impulse response (FIR) filtering and pulse compression have been employed to improve signal-to-noise ratio (SNR), to extend battery power and to address time resolution issues. Field trials in a hostile industrial environment with metallic obstructions in the form of pipe-work, ducting, stairs, beams and floors have been performed and methods of extracting environmental energy have been tested. ©2005 American Institute of Physics