Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

A wireless sensor network of permanently installed structural integrity monitors

Benny, C.G. and Steel, K. and McNab, A. and Hayward, G. (2005) A wireless sensor network of permanently installed structural integrity monitors. In: AIP Conference Proceedings, 2005-04-09 - 2005-04-09.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Structural integrity monitoring (SIM) involving a large numbers of distributed sensors is of increasing importance to a wide range of industries. Compact sensor packages combining ultrasonic transducers with local sensor and communications control functions and signal processing have been designed using modern miniaturization techniques. Autonomous wireless devices powered by on-board batteries can extract top-up energy derived from the sensor environment. Applications to date include erosion or corrosion monitors via ultrasonic thickness measurement devices, area mapping array sensors and time-of-flight diffraction (TOFD) technique transducers for defect monitoring. Formation or propagation of defects can also be monitored with passive acoustic emission (AE) sensors.The project concepts and early prototyping were presented at QNDE 2003. This paper highlights further progress towards a distributed wireless ultrasonic sensor network and presents results of TOFD and thickness measurement tests. Signal processing techniques including averaging, finite impulse response (FIR) filtering and pulse compression have been employed to improve signal-to-noise ratio (SNR), to extend battery power and to address time resolution issues. Field trials in a hostile industrial environment with metallic obstructions in the form of pipe-work, ducting, stairs, beams and floors have been performed and methods of extracting environmental energy have been tested. ©2005 American Institute of Physics