Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Identification and characterization of active and inactive species for surface-enhanced resonance Raman scattering

Khan, I. and Cunningham, D. and Graham, D. and McComb, D.W. and Smith, W.E. (2005) Identification and characterization of active and inactive species for surface-enhanced resonance Raman scattering. Journal of Physical Chemistry B, 109 (8). pp. 3454-3459. ISSN 1520-6106

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The surface-enhanced resonance Raman scattering (SERRS) activity of a statistically significant number of silver nanoparticles has been studied using a correlated SERRS mapping and transmission electron microscopy (TEM) method. TEM allowed the nature of each entity to be directly identified, and the SERRS activity was obtained from the corresponding SERRS map. Particles in various states of aggregation were analyzed to establish relative activities. It was established that SERRS activity is dependent on the specific batch of colloid tested. By averaging different colloid batches, it was shown that increasing SERRS activity is observed with increasing numbers of particles in the aggregates. By reducing the surface coverage of the particles to the extent that single moieties could be examined optically, the ratio of the relative activities of single particles, dimers, trimers, and larger aggregates was estimated. High-resolution TEM images of a number of active and inactive particles are reported. However, no clear correlation between microstructure and SERRS activity was observed.