Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Fuel cells for power generation and waste treatment

Gair, S. and Cruden, A.J. and McDonald, J.R. and Hegarty, T. and Chesshire, M. (2006) Fuel cells for power generation and waste treatment. Journal of Power Sources, 154 (2). pp. 472-478. ISSN 0378-7753

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

It is now becoming increasingly clear that the in situ use of biomass and organic waste streams are likely to provide the key to energy self sustainability for islands and remote communities. Traditionally biofuels have been used in combustion engines for electric power generation, however, when replaced by fuel cells there is the prospect of achieving higher generating efficiencies, coupled with, in some instances, the opportunity to produce biofuel at a cheaper rate than conventional fuels. Additionally, important environmental benefits can be achieved by way of mitigating greenhouse gas emissions, whilst providing a carbon sink. This paper presents the design details of such an installation that will provide a practical solution on an island (and be applicable in other remote and rural areas) where connection to the grid can be expensive, and where biofuels can be produced on site at no significant extra cost.