Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

A distributed fibre optic sensor for liquid hydrocarbon detection

Maclean, A. and Moran, C. and Johnstone, W. and Culshaw, B. and Marsh, D. and Andrews, G.M. (2001) A distributed fibre optic sensor for liquid hydrocarbon detection. In: Smart Structures and Materials 2001 Conference, 2001-03-05 - 2001-03-08.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A distributed fibre optic sensor for the detection and location of hydrocarbon fuel spills is presented. The sensor is designed such that liquid swelling polymers transduce their swelling into a microbend force on an optical fibre when exposed to hydrocarbon fuels. Interrogation of the sensor using standard Optical Time Domain Reflectometry (OTDR) techniques provides the possibility of rapidly detecting and locating target hydrocarbon fuels and chemicals at multiple positions along the sensor length. Events can typically be located to a precision of 2 m over a 10 km sensor length. Sensor response time on exposure to the hydrocarbon fuel is within 30 seconds. A detailed explanation of the operational characteristics of the sensor and the underlying technology utilised in its operation is given. Experimental tests using prototype sensors to simultaneously detect three separate 50 centimetre-long events are described. The characteristics of the sensor response in a range of hydrocarbon fuels under varying environmental conditions were investigated. Some of the safety advantages in using the sensor and its practical implementation in continuous monitoring of pipelines or fuel containment vessels are discussed.