Picture of scraped petri dish

Scrape below the surface of Strathprints...

Explore world class Open Access research by researchers at the University of Strathclyde, a leading technological university.

Explore

Novel screening method for enzyme activity and enantioselectivity using surface enhanced resonance Raman scattering

Stevenson, L.C. and Graham, D. and Moore, B.D. (2003) Novel screening method for enzyme activity and enantioselectivity using surface enhanced resonance Raman scattering. Abstracts of papers - American Chemical Society, 225 (368-BI). U243-U244. ISSN 0065-7727

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The use of surface enhanced resonance Raman scattering (SERRS) as a screening method for enzyme catalysed reactions is reported. Sensitive and reproducible detection has been possible, giving information on both enzyme activity and the enantioselectivity of the enzyme. Surface enhanced resonance Raman scattering (SERRS) [1-3] is one of the most sensitive spectroscopic techniques for molecular detection. To exploit this sensitivity, benzotriazole based dyes have been developed as optimal labels for detection and analysis using SERRS [4] as they adsorb strongly and irreversibly onto metal surfaces [5]. Masked benzotriazole dyes (see Figure 1) were designed to be completely SERRS inactive, thus facilitating development of benzotriazole derivatives which can be cleaved via an enzyme-catalysed reaction to release the SERRS active benzotriazole group.